Partner von azubiworld.com - Logo
 
Mathematik online lernen im Mathe-Forum. Nachhilfe online
Startseite » Forum » Beispiel zur Binomialverteilung - n und k

Beispiel zur Binomialverteilung - n und k

Schüler Allgemeinbildende höhere Schulen, 11. Klassenstufe

Tags: Binomialverteilung, Frage, MATH, Mathematik, Rechnen, Schule, Wahrscheinlichkeit

 
Antworten Neue Frage stellen Im Forum suchen
Neue Frage
Christoph12

Christoph12 aktiv_icon

22:46 Uhr, 28.06.2020

Antworten
Liebe Mathe-Community!

Ich hätte eine kurze Frage zu einem Mathe-Beispiel zur Binomialverteilung. Das Beispiel lautet:

„In einer Packung befinden sich 500 Schrauben. Davon sind zehn defekt. Wie groß ist die Wahrscheinlichkeit, dass unter fünf zufällig entnommen Schrauben, genau zwei nicht in Ordnung sind?“

Meine Frage: Was genau ist bei diesem Beispiel nun das n und das k, das man in der Formel P(X=k)=(n über k)pk(1-p)n-k einetzen muss? Ich bin mir ziemlich sicher, dass das k gleich 2 ist, jedoch bin ich mir beim n nicht ganz sicher (also ob es 500 oder 5 ist).

Die Zufallsvariable X (Anzahl der defekten Schrauben) ist, glaube ich, hier auf jeden Fall annähernd binomialverteilt, weil die Wahrscheinlichkeit (10500) theoretisch genommen nicht gleichbleibend ist. Um aber zu überprüfen, ob dieses Beispiel binomialverteilt ist, muss man ja das k durch das n dividieren und das Ergebnis davon muss kleiner als 0,05 sein. Deswegen vermute ich, dass das n gleich 500 ist. Doch wie können die fünf zufällig entnommenen Schrauben hier berücksichtigt werden, oder können sie das überhaupt hier? - Sehr verwirrend.

Ich hoffe, jemand kann mir helfen. :-)

Für alle, die mir helfen möchten (automatisch von OnlineMathe generiert):
"Ich bräuchte bitte einen kompletten Lösungsweg." (setzt voraus, dass der Fragesteller alle seine Lösungsversuche zur Frage hinzufügt und sich aktiv an der Problemlösung beteiligt.)
Hierzu passend bei OnlineMathe:

Online-Übungen (Übungsaufgaben) bei unterricht.de:
 
Antwort
pivot

pivot aktiv_icon

22:56 Uhr, 28.06.2020

Antworten
Hallo,

prinzipiell ist es weniger die Binomialverteilung als die Hypergeometrische Verteilung die hier Verwendung findet.

Gruß
pivot
Christoph12

Christoph12 aktiv_icon

23:19 Uhr, 28.06.2020

Antworten
Hallo,

erstmals vielen Dank für die recht schnelle Antwort! Da wir die hypergeometrische Verteilung noch nicht im Unterricht besprochen haben, bin ich mir nicht ganz sicher, aber ich habe dieses Kapitel gerade in meinem Schulbuch aufgeschlagen und es scheint diese zu sein.

Was mich jedoch wundert, ist, dass auf dem Arbeitsblatt, das wir dazu bekommen haben, steht, dass es sich um eine Binomialverteilung handelt (siehe Bild). Liegt das Arbeitsblatt falsch bei diesem Beispiel?

LG

2CA6ED80-073A-448F-8251-AF6AE55A600C
Antwort
pivot

pivot aktiv_icon

23:28 Uhr, 28.06.2020

Antworten
Wenn man es genau nimmt ist die Markierung falsch. Was man machen kann ist, die Hypergeometrische Verteilung durch die Binomialverteilung annähern (approximieren). Hattet ihr das schon?
Christoph12

Christoph12 aktiv_icon

23:40 Uhr, 28.06.2020

Antworten
Wir hatten bisher nur die Binomialverteilung im Unterricht und Begriffe wie zB „annähernd binomialverteilt“, aber das ist sicherlich etwas anderes (die hypergeometrische haben wir eben gar nicht besprochen).

Das Arbeitsblatt behauptet, dass dieses Beispiel annähernd binomialverteilt sei, aber es sollte wohl falsch liegen.
Antwort
pivot

pivot aktiv_icon

23:44 Uhr, 28.06.2020

Antworten
Sehe ich auch so. Prinzipiell liegt bei dem Beispiel keine Binomialverteilung vor.
Antwort
Matlog

Matlog aktiv_icon

12:58 Uhr, 29.06.2020

Antworten
Bei keinem der fünf Beispiele auf dem Arbeitsblatt handelt sich (exakt) um eine Binomialverteilung.
Aufgabe ist es hier herauszufinden, in welchen Fällen es (vereinfachend) trotzdem sinnvoll ist, mit dieser zu rechnen!

Wann darf man das tun?
Wenn die Anzahl der Ziehungen n ziemlich klein ist im Vergleich zur Gesamtanzahl N der zu ziehenden Objekte. Als Faustregel sagt man: nN<0.05

In deiner Aufgabe ist jetzt n=5 und N=500, also nN=0.01, Approximation also sinnvoll.
Außerdem ist p=10500=150
k=2 hast du zwar auch richtig identifiziert, aber die von dir angegebene Bedingung kn<0.05 (oder kN<0.05) macht überhaupt keinen Sinn!
Was ich mit n bezeichnet habe (Anzahl der Ziehungen) ist natürlich auch das n für die Binomialverteilung!
Christoph12

Christoph12 aktiv_icon

13:34 Uhr, 29.06.2020

Antworten
Ok, danke! Also ist das erste Beispiel keine (annähernde) Binomialverteilung, weil 420>0,05 ist und das letzte auch nicht, weil 520 auch größer als 0,05 ist?

Und das zweite ist aber annähernd binomialverteilt und das dritte und vierte auch, weil die Wahrscheinlichkeit jeweils als gleich angenommen wird (weil die Griundgesamtheit theoretisch die Bewohnerinnen und Bewohner eines ganzen Landes umfasst und die Stuchprobe sehr klein ist). Stimmt das?

LG
Antwort
supporter

supporter aktiv_icon

13:40 Uhr, 29.06.2020

Antworten
(52)0,0220,98=0,003765


Hypergeometrisch:
(102)(4903)(5005)=0,003458

Die Differenz ist gering.
Frage beantwortet
Christoph12

Christoph12 aktiv_icon

13:42 Uhr, 29.06.2020

Antworten
Ok, vielen Dank!!