|
Hi Ich soll folgende Absorptionsregeln ohne eine Wertetafel/tabelle beweisen.
Ich habe es mir angeschaut , aber ich komm einfach nicht drauf ich habe noch nicht wirklich Erfahrung mit dem beweisen ohne Wertetafel deswegen wären Ansatzgedanken und ein ausführlicher Lösungsweg nicht schlecht.
Für alle, die mir helfen möchten (automatisch von OnlineMathe generiert): "Ich möchte die Lösung in Zusammenarbeit mit anderen erstellen." |
|
|
also wenn du die wahrheit dieser formeln nicht inhaltlich, also durch einsetzen von für die variablen (wahrheitstabelle) prüfen darfst, dann musst du irgendeine andere grundlage zum beweisen vorgegeben haben. sollst du die formeln vielleicht in irgendeinem axiomensystem herleiten?? oder gibt es gewisse schon bewiesene formeln, auf die du die richtigkeit deiner zu beweisenden zurückführen kannst?? oder was gibt es für vorgaben? lg
|
|
Wir haben im Vorfeld einige Sachen mit einigen Wertetabellen bewiesen, kann ich diese verwenden ? ich dachte ich dürfe keine Wertetabelle benutzen.
|
|
also auf jeden fall brauchst du irgendeine grundlage um etwas zu beweisen. und das ist in der aussagenalgebra (respektive aussagenlogik) eben das einsetzen der werte in allen möglichkeiten. hier ist es also wohl so gemeint, dass du durch äquivalenzumformungen und mit hilfe von bekannten formeln auf die richtigkeit deiner formeln schließen sollst. . kann man auch mit hilfe von normalformen die allgemeingültigkeit von formeln beweisen, was aber eigendlich auch nur eine verallgemeinerung des gesagten ist. also: bekannte formeln zuhilfe nehmen! lg
|
|
Gut ich habe mit hinzugezogenen Formeln a beweisen können nun sitze ich aber bei fest.
.
Ich habe letzte Woche mit einer Wertetabelle folgende Aussagen bewiesen.
. . .
Wenn ich diese nutzen wollte, wie setze ich da bei . am besten an ?
|
|
also ich kann mir wirklich nicht vorstellen, dass ihr nur das bisschen benutzen dürft. . distributivgesetz, was sehr oft benutzt wird, und auch hier meiner meinung nach unentbehrlich ist, wirst du sicher auch benutzen dürfen, genauso wie kommutativität .ä. also los;-) lg
|
|
Dann würde es ja so aussehen.
. kann ich das so verwenden ohne auf einzugehen ? Wie nennt man sowas wie um es wenigstens zu benennen ?
|
|
ja, ich denke, dass ist so elementar, dass du das benutzen dürfen soltest. allerdings hast du hier UND und ODER in dem schritt vertauscht. deshalb benutzt du dann auch . lg
|
|
ich sehe schon den Fehler dann heißt es da falsch ist .
|