Mathematik online lernen im Mathe-Forum. Nachhilfe online
Startseite » Forum » DGL lösen

DGL lösen

Universität / Fachhochschule

Gewöhnliche Differentialgleichungen

Tags: Gewöhnliche Differentialgleichungen

 
Antworten Neue Frage stellen Im Forum suchen
Neue Frage
anonymous

anonymous

16:56 Uhr, 23.04.2016

Antworten
Hallo,

ich probiere die DGL y'=-yx+1,y(2)=32 zu lösen.
Leider ist es durch normales Trennen der Variablen nicht möglich, da sich entweder x oder y kürzt.
Mit Substitution komm ich leider auch nicht weiter.

Kann mir jemand erklären, wie ich hier vorgehen könnte oder einen Tipp geben?

Lg
Online-Nachhilfe in Mathematik
Antwort
mihisu

mihisu aktiv_icon

17:16 Uhr, 23.04.2016

Antworten
Man kann zunächst die zugehörige homogene Differentialgleichung
y'=-yx
mit Trennung der Variablen lösen, und anschließend über Variation der Konstanten die Lösungen der DGL
y'=-yx+1
erhalten.

\\\\

Oder man kennt die Lösungsformel:
Die Lösung eines Anfangswertproblems
y'(x)=a(x)y(x)+b(x),    y(x0)=y0
ist gegeben durch
y(x)=eA(x)(x0xe-A(t)b(t) dt+y0e-A(x0)),
wobei A eine Stammfunktion von a ist.

\\2016-04-23T17:23\\

Ich habe gerade eine passende Substitution gefunden, um das "+1" wegzubekommen:

Wähle u(x):=y(x)-x2.
Antwort
rundblick

rundblick aktiv_icon

18:16 Uhr, 23.04.2016

Antworten
.
y'=-yx+1

das ist eine sog.Ähnlichkeits-DGL .. da substuierst du so:

z=yx...... also ... y=xz... und damit y'=xz'+z

eingesetzt in deine DGL

xz'+z=-z+1


xz'=-2z+1... TdV ..

12z-1dz=-1xdx


den Rest wirst du nun sicher problemlos selbst erledigen..

was bekommst du dann als Ergebnis? ..

.
Antwort
michaL

michaL aktiv_icon

18:43 Uhr, 23.04.2016

Antworten
Hallo,

die DGL yʹ=-yx+1 kann umgeformt werden zu xyʹ+y=x. Die linke Seite hat eine erstaunliche Ähnlichkeit mit Termen, wie sie bei der Produktregel auftauchen. Daher substitiert man z:=xy, woraus eine trennbare DGL entsteht.

Mfg Michael
Antwort
rundblick

rundblick aktiv_icon

18:50 Uhr, 23.04.2016

Antworten
.
@ michaL

auch eine schöne Lösungsmöglichkeit !.
... aber leider scheint sich der lazy bum
eh nicht für Antworten zu interessieren ..

http//www.dict.cc/englisch-deutsch/lazy.html
.
Frage beantwortet
anonymous

anonymous

20:10 Uhr, 23.04.2016

Antworten
Danke an alle. Hab es jetzt mit der Formel gemacht und mit der Substitution! :-)

@rundblick: Keine Ahnung, was du für ein Problem hast, ich habe vorher falsche substituiert, dass heißt nicht, dass ich faul bin oder unfreundlich werden musst. Ich lerne das halt erst und wenn ich fragen habe, darf ich mich wohl an das Forum wenden, ohne angepöppelt zu werden.

Schöenn Abend
Antwort
rundblick

rundblick aktiv_icon

21:56 Uhr, 23.04.2016

Antworten
.
" angepöppelt.."
lustig ... schlag das mal nach ..

kreativ bist du offenbar - nicht nur bei deiner Selbstdarstellung, lazymath

und ich habe einfach nur nachgeschaut, was du uns mit dem lazy sagen willst..
besonders, da du dich lange nicht für die durchweg hilfreichen Antworten zu
deiner Sachfage interessiert hast..

Selbstverständlich ist es erfreulich, wenn du dich bei Fragen an das Forum
wendest und wie du siehst, hilft man dir hier gerne, kompetent und zielführend ;
deshalb darfst du deine dumme Pöbelei gerne für dich behalten.

.
Antwort
mihisu

mihisu aktiv_icon

23:25 Uhr, 23.04.2016

Antworten
Also da muss ich jetzt auch mal meinen Senf dazugeben.

"da du dich lange nicht für die durchweg hilfreichen Antworten zu deiner Sachfage interessiert hast"

Ich finde jetzt die knapp 3 Stunden nicht übertrieben lange. Man wird doch wohl verstehen können, wenn jemand nicht den ganzen Tag vor dem PC auf eine Antwort wartet, sondern sich zunächst mit was anderem beschäftigt, evtl. irgendeinen Termin hat, oder was weiß ich ... und dann erst später abends wieder reinschaut. Das ist doch vollkommen in Ordnung.
Antwort
rundblick

rundblick aktiv_icon

09:16 Uhr, 24.04.2016

Antworten

.
" Das ist doch vollkommen in Ordnung."

mihisu, du magst ja Recht haben..
aber nicht in Ordnung finde ich, dass der lazy Typ

statt herumzumäkeln nicht einfach selbst informiert, warum...

es trotz entsprechender Anfrage nicht für nötig findet, zumindest
sein nun angeblich gefundenes Ergebnis hier noch zu notieren..
Es gibt sicher hier Leser, die sich auch mit der Aufgabe beschäftigt
haben und die sich da evtl. interessieren für mögliche Ergebnisse ..

.
Frage beantwortet
anonymous

anonymous

12:17 Uhr, 24.04.2016

Antworten
Ok das führt zu nichts, ja es gibt Leute, die arbeiten und Kinder haben und nicht jede Minute vorm Compi sitzen.

Wenn du das Ergebnis gern drin haben wolltest, hättest du das einfach höflich schreiben können.
Bitte spar dir doch einfach, wenn ich hier eine Frage stelle, sie zu lesen oder zu antworten, das wäre sehr angenehm. Tschüss