Tja, was ist einfach? Mit Maßtheorie-Grundkenntnisse kann man "Borelmenge" so definieren:
Ist ein topologischer Raum, dann ist die Borel-Sigmaalgebra die kleinste Sigma-Algebra über , die alle offenen Mengen dieses Raums enthält. Eine Teilmenge von ist eine Borelmenge, wenn sie in dieser Sigma-Algebra liegt.
Im Falle von (oder allgemeiner ) gibt es zahlreiche alternative (und deutlich kleinere) Erzeuger-Mengensysteme statt der offenen Mengen. So reicht beispielsweise bereits das System aller Intervalle als Erzeuger aus - noch krasser sogar, es reichen auch bereits die mit rationalen .
|