Mathematik online lernen im Mathe-Forum. Nachhilfe online
Startseite » Forum » Divisionsalgorithmus für Polynome?!

Divisionsalgorithmus für Polynome?!

Schüler Gymnasium, 9. Klassenstufe

Tags: Algorithmus, Division, polynom

 
Antworten Neue Frage stellen Im Forum suchen
Neue Frage
hamster2000

hamster2000 aktiv_icon

13:11 Uhr, 30.12.2014

Antworten
Der Lösungsweg dazu ist nicht angegeben und ich checks einfach nicht:
(n4+5n-6):(n+2)=n3-2n2+4n-3 (im Mathebuch zum Thema: Divisionsalgorithmus für Polynome, Divisionen ohne Rest)

Bitte um einen Lösungsweg!! Danke

Für alle, die mir helfen möchten (automatisch von OnlineMathe generiert):
"Ich möchte die Lösung in Zusammenarbeit mit anderen erstellen."
Hierzu passend bei OnlineMathe:

Online-Übungen (Übungsaufgaben) bei unterricht.de:
 
Online-Nachhilfe in Mathematik
Antwort
tommy40629

tommy40629 aktiv_icon

16:14 Uhr, 30.12.2014

Antworten
Schau auf alle Fälle das an:

oberprima.com/mathematik/polynomdivision

oder ganz neu:

www.youtube.com/watch?v=KcVWdNl_whw

Zieh Dir die Videos an, dann kannst du es bis 1800 Uhr!!!!


Ich kann hier die Rechnung nicht wie an der Tafel hinschreiben.



Grundlage ist, dass Du noch weißt, wie man schriftlich z.B. 115:5 rechnet.


Ich schreibe mal für das n ein x, weil das Dir vielleicht bekannter ist:

(x4+5x-6):(x+2)

Wir bearbeiten erst x4

Wir rechnen: x4x=x3

(x4+5x-6):(x+2)=x3

Nun rechnen wir, x3*(x+2)=x4+2x3 wir schreiben nun -(x4+2x3) unter (x4+5x-6).

Das sieht dann ca. so aus

(x4+5x-6):(x+2)-(x4+2x3)................

Jetz rechnen wir x4-x4=0, -(2x3)=-2x3 Den Rest können wir nicht verrechnen, da hier x nicht mit GLEICHEN Potenzen vorkommt.

Jetzt steht dort:

(x4+5x-6):(x+2)-2x3+5x-6................

Wir bearbeiten erst -2x3

Wir rechnen: -2x3x=-2x2

(x4+5x-6):(x+2)=x3-2x2

Jetzt rechnet man wieder zurück:

(x+2)*(-2x2)=-2x3-4x2

Die schreibt man wieder unter (x4+5x-6):(x+2).

Das kann ich hier aber nicht weiter darstellen.

Antwort
Femat

Femat aktiv_icon

17:18 Uhr, 30.12.2014

Antworten
Und händisch sieht das etwa so aus.

141230.2
Antwort
Atlantik

Atlantik aktiv_icon

18:15 Uhr, 30.12.2014

Antworten
Ich habe die Polynomdivision mal ganz aufgeführt.


mfG

Atlantik

Unbenannt
Frage beantwortet
hamster2000

hamster2000 aktiv_icon

15:51 Uhr, 01.01.2015

Antworten
Dankesehr!! Mein einziges Problem bestand darin, dass ich nicht wusste, wie ich z.B. x3-x2 rechnen sollte (unterschiedliche Exponenten)
Frage beantwortet
hamster2000

hamster2000 aktiv_icon

16:00 Uhr, 01.01.2015

Antworten
Und ein schönes neues Jahr!!!