Mathematik online lernen im Mathe-Forum. Nachhilfe online
Startseite » Forum » Extremwertproblem

Extremwertproblem

Schüler

Tags: Analysis, Differentialrechnung, Extremwertaufgabe

 
Antworten Neue Frage stellen Im Forum suchen
Neue Frage
talentfrei

talentfrei aktiv_icon

12:13 Uhr, 15.12.2012

Antworten
Einer Kugel wird ein gerades Prisma mit einem gleichseitigen Dreieck als Grundfläche einbeschrieben. Wie gross ist das maximal mögliche Prismavolumen?





Ich habe keine Ahnung davon! Wäre froh um eine Musterlösung! Danke!
Für alle, die mir helfen möchten (automatisch von OnlineMathe generiert):
"Ich bräuchte bitte einen kompletten Lösungsweg." (setzt voraus, dass der Fragesteller alle seine Lösungsversuche zur Frage hinzufügt und sich aktiv an der Problemlösung beteiligt.)
Online-Nachhilfe in Mathematik
Antwort
anonymous

anonymous

12:40 Uhr, 15.12.2012

Antworten
Eine Querschnittszeichnung kann helfen.
Im Querschnitt sieht man unten die Seite des gleichseitigen Dreiecks als waagrechte Strecke, s2 ist rot markiert.
Das Prisma selbst erscheint im Querschnitt als Rechteck, h2 ist blau markiert.


Prisma
Antwort
anonymous

anonymous

12:48 Uhr, 15.12.2012

Antworten
Das Volumen eines Prismas erhalte ich mit
V=Gh
Hier also
V=s243h
Das Volumen soll ein Maximum werden. Da ich zwei Variable habe (s und h) brauche ich noch eine Nebenbedingung.
Die ergibt sich z.B. aus dem elementargeometrischen Höhensatz im rechtwinkeligen Dreieck ( grün markiert )
Höhensatz: in einem rechtwinkeligen Dreieck ist das Quadrat der Höhe gleich dem Produkt der beiden Hypotenusenabschnitte.
In unserem Beispiel
(s2)2=(r+h2)(r-h2)
(s2)2=r2-(h2)2
s24=r2-h24
Diesen Term setze ich in die Volumsformel ein und erhalte so eine Funktion in h.
Differenzieren, 0 setzen und fertig.