![]() |
---|
Hallo zusammen, ich hab eine Aufgabe, welche ich nicht lösen kann: Gegeben ist die reelle Funktionenschar und Weisen Sie nach, dass die Graphen der Funktion nicht punktsymmetrisch zum Koordinatenursprung verlaufen. Ansatz ist doch eigentlich das bzw. Nur hab ich gar keine Idee wie ich das jetzt umsetze. Vielen Dank für eure Hilfe vorab. Gruß Für alle, die mir helfen möchten (automatisch von OnlineMathe generiert): "Ich möchte die Lösung in Zusammenarbeit mit anderen erstellen." |
Hierzu passend bei OnlineMathe: Funktionenschar (Mathematischer Grundbegriff) Symmetrie (Mathematischer Grundbegriff) Online-Übungen (Übungsaufgaben) bei unterricht.de: Polynomfunktionen / ganzrationale Funktionen - Symmetrie Potenzfunktionen - Einführung Symmetrie von Vierecken |
![]() |
![]() |
Du hast Deine Frage doch schon selber beantwortet. Bei Punktsymmetrie zum Koordinatenursprung muss gelten Also mach das einfach! Ausrechnen und schauen, ob das Ergebnis gleich der Funktion ist. |
![]() |
DANKE DIR! War heut einfach schon zu viel Mathe.. 180min in der Schule 240min zu Hause.. Danke noch mal! :-) |