|
Hallo, kann mir jemand bitte bei folgender Aufgabe helfen:
Bestimmen Sie alle Element aus den Gaußschen Primzahlen mit
.
Ich habe keine Ahnung, wie ich das lösen soll. Kann mir jemand ein paar Denkanstöße geben??
Für alle, die mir helfen möchten (automatisch von OnlineMathe generiert): "Ich bräuchte bitte einen kompletten Lösungsweg." (setzt voraus, dass der Fragesteller alle seine Lösungsversuche zur Frage hinzufügt und sich aktiv an der Problemlösung beteiligt.) |
|
|
Mein Ansatz: Nach Voraussetzung ist sowie xyz=1. Somit sind und xyz Normen. Sei x=a+bi, y=c+di und z=e+fi, dann gilt:
xyz=(a+bi)(c+di) (e+fi)=(ac+adi+bci-bd)(e+fi)=(ace+acfi+adei-adf+bcei-bcf-bde-bdfi)=(ace-adf-bcf-bde)+(acf+ade+bce-bdf)*i=1.
Somit muss (ace-adf-bcf-bde)^2=1 sein.
Betrachten wir so gilt x+y+z=(a+bi)+(c+di)+(e+fi)=(a+c+e)+(b+d+f)*i. Somit muss sein.
Nur wie mache ich jetzt weiter??
Meiner Ansicht nach ist die Lösung die, dass eine von den drei Zahlen gleich 1 ist und die anderen 0. Dies kommt mir aber zu einfach vor, da müsste es doch noch andere Lösungen geben oder bin ich vollkommen am Holzweg??
|
|
Kann mir denn niemand weiterhelfen??
|
Diese Frage wurde automatisch geschlossen, da der Fragesteller kein Interesse mehr an der Frage gezeigt hat.
|