Partner von azubiworld.com - Logo
 
Mathematik online lernen im Mathe-Forum. Nachhilfe online
Startseite » Forum » Graph der Lemniskate, imaginärer Teil

Graph der Lemniskate, imaginärer Teil

Universität / Fachhochschule

Tags: Lemniskate

 
Antworten Neue Frage stellen Im Forum suchen
Neue Frage
michael1989

michael1989 aktiv_icon

11:38 Uhr, 10.06.2019

Antworten
Hallo, ich habe beschäftige mich seit einiger Zeit mit der Lemniskate, also der Cassinischen Kurve, bei der a=c

Bei der Gleichung
y4+ (2x² + 2c²)y² +x4- 2c²x² -a4+c4=0
kann man x² durch z substituieren und man kommt auf:
+ (2x² + 2c²)z +x4- 2c²x² -a4+c4=0.

Wenn man nun die PQ-Formel anwendet und resubstituiert, kommt man auf:

y1= sqrt(-(x²+c²)+sqrt(4c²x² +a4))
y2= -(sqrt(-(x²+c²)+sqrt(4c²x² +a4)))
y3= sqrt(-(x²+c²)-sqrt(4c²x² +a4))
y4= -(sqrt(-(x²+c²)-sqrt(4c²x² +a4)))

Wenn man den Graph für z.B. y1 zeichnet, kommen reale Werte und imaginäre Werte (können mit -1 multipliziert werden) heraus.
Was bedeutet es, wenn eine imaginäre Zahl als y-Koordinate herauskommt?


Für alle, die mir helfen möchten (automatisch von OnlineMathe generiert):
"Ich bräuchte bitte einen kompletten Lösungsweg." (setzt voraus, dass der Fragesteller alle seine Lösungsversuche zur Frage hinzufügt und sich aktiv an der Problemlösung beteiligt.)
Antwort
Roman-22

Roman-22

21:46 Uhr, 11.06.2019

Antworten
> Was bedeutet es, wenn eine imaginäre Zahl als y-Koordinate herauskommt?
Dass es an dieser Stelle (= x-Wert) eben keinen reellen y-Wert gibt. Dort gibt es keinen Ast der Kurve, keine reellen Punkte, die du zeichnen könntest.

Das ist so wie wenn du neben einem Kreise eine Passante einzeichnest, also eine Gerade. welche den Kreis "nicht schneidet". Diese Gerade hat aber auch zwei Schnittpunkte mit dem Kreis, aber eben keine reellen, keine, die man einzeichnen könnte.

Oder meinst du, weil einige deiner y für kein x etwas Reelles liefern?
Das, was du von der Lemniskate siehst, ist ja nicht alles. Es handelt sich um eine algebraische Kurve vierter Ordnung und daher hat sie mit jeder Geraden vier Schnittpunkte. Diese müssen aber nicht alle reelle sein. Deine y, welche nichtreelle Werte liefernm gehören eben zu den komplexen Zweigen der Kurve.
Frage beantwortet
michael1989

michael1989 aktiv_icon

18:24 Uhr, 13.06.2019

Antworten
Vielen Dank für die rasche und verständliche Hilfe.
Eine Frage hätte ich noch:

Für Cassinische Kurven gilt: PF1 PF2 = a²
Nun kann als Cassinische Kurve auch eine Ellipse herauskommen.
In einer Ellipse gilt bekanntlich: PF1 + PF2 =2a,
aber nicht PF1 PF2 = a²

Warum gehört die Ellipse dann trotzdem zu den Cassinischen Kurven, die eben durch
PF1 PF2 = a² definiert sind?

Antwort
Roman-22

Roman-22

19:22 Uhr, 13.06.2019

Antworten
> Nun kann als Cassinische Kurve auch eine Ellipse herauskommen.
Wirklich - wie? Da hätten sich Kepler und Cassini wegen der Planetenbahnen ja gar nicht in die Haare kriegen müssen.