Partner von azubiworld.com - Logo
 
Mathematik online lernen im Mathe-Forum. Nachhilfe online
Startseite » Forum » Kommutativer Ring mit Idealen

Kommutativer Ring mit Idealen

Universität / Fachhochschule

Ringe

Tags: Ideal, kommutativ, Ring

 
Antworten Neue Frage stellen Im Forum suchen
Neue Frage
NotUnknown

NotUnknown aktiv_icon

22:27 Uhr, 01.12.2018

Antworten
Guten Abend!

zu den folgenden Aufgaben habe ich Fragen:


Sei R ein kommutativer Ring. Eine Teilmenge I⊆R von R heißt Ideal von R, falls gilt:

I ist Untergruppe der additiven Gruppe (R,+).

RI⊆I, das heißt ra∈I für alle r∈R und a∈I.

Für Elemente a1,…,ak∈R definieren wir
(a1,…,ak)={r1a1+…+rkak∣r1,…,rk∈R}.

Zeigen Sie:

(a)
Für a1,…,ak∈R ist (a1,…,ak) das kleinste Ideal, das a1,…,ak enthält.

(b)
Zeigen Sie, dass es für jedes Ideal I⊆Z ein g∈Z mit I=(g) gibt.


Ich habe bereits versucht das kleinste Ideale zu zeigen(siehe Bild), jedoch weiss ich erstens nicht ob es richtig ist und wie ich die (b) machen soll.




SharedImage

Für alle, die mir helfen möchten (automatisch von OnlineMathe generiert):
"Ich möchte die Lösung in Zusammenarbeit mit anderen erstellen."
Antwort
bienemaja321

bienemaja321 aktiv_icon

23:56 Uhr, 01.12.2018

Antworten
oh man, mein beileid zu dieser Aufgabe :(
Antwort
ermanus

ermanus aktiv_icon

17:24 Uhr, 02.12.2018

Antworten
Hallo,
das Bild, was du beigefügt hast, soll doch wohl zu (b) gehören?.
Nun zu (a):
1. Zeige: (a1,,ak) ist ein Ideal.
2. Zeige: Für jedes Ideal I, das a1,,ak enthält,
gilt (a1,,ak)I.
1. und 2. besagen gerade, dass (a1,,ak) das kleinste
solche Ideal ist.
Gruß ermanus
NotUnknown

NotUnknown aktiv_icon

17:36 Uhr, 02.12.2018

Antworten
Hi,

ist das der Ansatz zu a? Denn so sieht mein Ansatz aus, oder ist das schon fertig. Ich verstehe bei Beweisen nie so richtig wann es endlich bewiesen wurde.

Bei meinem Bild habe ich versucht b zu machen, jedoch habe ich dort das kleinste Ideale gezeigt (denke ich ). Ich bin mir da nicht sicher, würde mich freuen wenn ihr rüber schaut.
Antwort
ermanus

ermanus aktiv_icon

17:55 Uhr, 02.12.2018

Antworten
Ich verstehe nicht, was du bei (a) genau gemacht hast.
Hast du meine Punkte 1. und 2. nachgewiesen?

Die Aufgabe (b) hat mit der Problematik in (a) gar nichts zu tun.
Hier liegt ein eigenständiges Problem vor, wo der Begriff
"kleinstes Ideal" kaum eine Rolle spielt. Du solltest aber
bei (b) noch zeigen, wie die "Divsion mit Rest"-Geschichte dazu führt,
dass deine kleinste pos. Zahl n wirklich Teiler jeder Zahl des Ideals ist.
Genau das ist ja der interessante Punkt!
Diese Frage wurde automatisch geschlossen, da der Fragesteller kein Interesse mehr an der Frage gezeigt hat.