Mathematik online lernen im Mathe-Forum. Nachhilfe online
Startseite » Forum » Kubische Funktion bestimmen

Kubische Funktion bestimmen

Schüler Gesamtschule, 12. Klassenstufe

Tags: Abitur, Analysis, Differentialrechnung, Gleichungssystem, kubische Funktion, MATH, Steckbriefaufgaben

 
Antworten Neue Frage stellen Im Forum suchen
Neue Frage
00Student00

00Student00 aktiv_icon

20:21 Uhr, 11.08.2014

Antworten
Hey

ich bin neu hier in diesem Forum und bräuchte mal eure hilfe.

Ich wiederhole gerade den Stoff aus dem Matheunterricht der 12. Klasse und bin dort bei den Steckbriefaufgaben und Gleichungssytemen hängengeblieben.

Die Aufgabe in einer alten Klausur lautet:

Bestimme die Gleichung der kubischen Funktion (Funktion 3.Grades) mithilfe von 2 Punkten:

f(x)= ax^3+bx^2+cx+d
p1(1010)
p2(04)

Wie genau mache ich das jetzt?

Ich habe zuerst den Funktionsterm 2 mal abgeleitet:

f(x)=ax3+bx2+cx+d
f'(x)=3ax2+2bx+c
f''(x)=6ax+2b


Nun würde ich die beiden Punkte einsetzen:

f(10)=a103+b102+c10+d=10
f(0)=a03+b02+c0+d=4


weiter weiß ich nicht mehr.

Ich hoffe ihr könnt mit helfen wie ich das Gleichungssystem aufstelle und wie genau ich dann auf die kubische Funktion komme :-)

Vielen Dank

Aufgabe
webcam-toy-foto12

Für alle, die mir helfen möchten (automatisch von OnlineMathe generiert):
"Ich bräuchte bitte einen kompletten Lösungsweg." (setzt voraus, dass der Fragesteller alle seine Lösungsversuche zur Frage hinzufügt und sich aktiv an der Problemlösung beteiligt.)
Hierzu passend bei OnlineMathe:
Funktion (Mathematischer Grundbegriff)
Online-Nachhilfe in Mathematik
Antwort
Ma-Ma

Ma-Ma aktiv_icon

20:29 Uhr, 11.08.2014

Antworten
Die Aufgabe ist unvollständig und somit nicht lösbar.

Komplette Aufgabe / Originalaufgabe / Skizze ?
Frage beantwortet
00Student00

00Student00 aktiv_icon

20:40 Uhr, 11.08.2014

Antworten
die dargestellte 50m lange und 20m hohe Konzerthalle soll ein Dach erhalten, dessen Profilkurve durch eine kubische Funktion f und eine quadratische Funktion g modelliert werden kann.
Die quadratrische Funktion hat die Gleichung g(x)=-(110)x2+8x-150

A.) Bestimme die Gleichung der kubischen Funktion auf die geübte Weise!


Aufgabe
Antwort
Ma-Ma

Ma-Ma aktiv_icon

20:53 Uhr, 11.08.2014

Antworten
Hinweis: Bitte erst abhaken, wenn die Aufgabe erledigt ist.
---------------
Nun ja, nicht schön, aber etwas besser.
Der Aufgabentext ist immer noch nicht komplett! Da fehlt noch eine Info zur Parabel!
------------

Die kubische Funktion hat 4 Variablen, also brauchen wir 4 Bedingungen.
Davor brauchen wir garnicht rechnen.

Aus Deiner Skizze kannst Du 3 Bedingungen ermitteln.
I) f(0)=4...........A(0|4)
II) f(10)=10..........B(10|10)

Siehst Du einen Extremwert bei der kubischen Funktion ?
III) f'(...)=0
Bitte ergänzen.

LG MA-MA


00Student00

00Student00 aktiv_icon

20:59 Uhr, 11.08.2014

Antworten
Also wir haben einen Hochpunkt bei (1010) und bei der quadratischen funktion bei (4010)




Aufgabe
Antwort
Ma-Ma

Ma-Ma aktiv_icon

21:07 Uhr, 11.08.2014

Antworten
Aus dem Hochpunkt der kubischen Funktion können wir die 3.Bedingung ablesen (solltest Du eigentlich oben ergänzen))

III) f'(10)=0.......... aus Hochpunkt B(10|10)

-------------------------
Den Hochpunkt der quadratischen Funktion hab ich noch nicht ermittelt, mache ich gleich.

Was mich irritiert, die Halle soll doch 20m hoch sein ?
Wenn beide Hochpunkte bei y=10 liegen, so passt irgendwas nicht!

------------
Kannst Du die Aufgabenstellung mal abfotografieren?
Gehört zur Ast eine Skizzenvorlage ?


00Student00

00Student00 aktiv_icon

21:12 Uhr, 11.08.2014

Antworten
Ja die Halle ist insgesamt 20m hoch.
also 10m das Gebäude und 10m das Dach. Da es nur im das Dach geht wurde es ab dort wieder von 0m bis 10m beschrieben.

Die Aufgabenstellung und die Skizze ist genauso wie ich beschrieben habe.

webcam-toy-foto12
Antwort
Ma-Ma

Ma-Ma aktiv_icon

21:15 Uhr, 11.08.2014

Antworten
... gelöscht ...

------------------
Jetzt noch richtig herum (ohne Spiegelschrift) und mit AUFGABENTEXT, dann kommen wir zu Potte ....
LG Ma-Ma
00Student00

00Student00 aktiv_icon

21:19 Uhr, 11.08.2014

Antworten
also eigentlich es doch der Hochpunkt des Graphen.
Deswegen wurde doch nochmal ein Schnitt gemacht mit der X-Achse.

okay und wie geht es weiter? Ich wüsste nicht wie ich deinen letzten Satz vervollständige
Antwort
Ma-Ma

Ma-Ma aktiv_icon

21:22 Uhr, 11.08.2014

Antworten
Habe meinen letzten Beitrag gelöscht, da ich ihn vor Deinem Bild geschrieben habe.

Also nochmal, wir brauchen 4 Bedingungen.
3 haben wir schon.

Du kannst noch einen Punkt ablesen. Siehst Du ihn (Tipp:-P)arabel)

00Student00

00Student00 aktiv_icon

21:26 Uhr, 11.08.2014

Antworten
Achso :-)

Also ich hätte jetzt gesagt bei P(304)

Also hätten wir ja

p1(04);p2(1010);p3(304);p4(4010)
Antwort
Ma-Ma

Ma-Ma aktiv_icon

21:34 Uhr, 11.08.2014

Antworten
Hinweis: Punkte schreiben: Der senkrechte Strich ist neben dem Zeichen"<".
----------

P4(40|10) kann ich bestätigen.
P3(30|4) könnte stimmen, ist jedoch nur aus der Skizze geraten (Tiefpunkt)

Wir werden es mit P3 versuchen.

-----------------------
4 Bedingungen =4 Gleichungen ... das passt.

I) f(0)=4.......... P1
II) f(10)=10....... P2
III) f'(10)=0....... Hochpunkt P2
IV) f'(30)=0........ Tiefpunkt P3

Gibt es dazu Fragen?




00Student00

00Student00 aktiv_icon

21:39 Uhr, 11.08.2014

Antworten
Gut..also haben wir jetzt unsere vier Punkte.

Bis jetzt ist alles ok :-) wie geht es weiter?

Vielen Dank für deine Mühe bisher


Antwort
Ma-Ma

Ma-Ma aktiv_icon

21:43 Uhr, 11.08.2014

Antworten
Bis dahin war Denken gefragt.

Und jetzt machen wir uns an die hässliche Rechnung. Das ist nur noch einsetzen, umstellen, einsetzen ... einfach mühselig.

----------------
Deine Ableitungen sind übrigens richtig.
----------------

Wir beginnen am besten dort, wor x=0 ist, das ist immer am einfachsten.

I) f(0)=4
4=a03+b02+c0+d

d=...?



00Student00

00Student00 aktiv_icon

21:48 Uhr, 11.08.2014

Antworten
Ja Ableiten werde ich ja können :-D)

I) d=4 das hatte ich auch in der Klausur richtig. Doch dannach wurde es chaotisch
Antwort
Ma-Ma

Ma-Ma aktiv_icon

21:56 Uhr, 11.08.2014

Antworten
Zum weiteren Lösen gibt es viele unterschiedliche Wege. Ich kann Dir eine Variante zeigen, so wie ich es machen würde. Im Endeffekt muss aber jeder seine eigene Lieblingsvariante finden ....

----------
Wir haben jetzt noch 3 Gleichungen übrig mit 3 Variablen (a,b und c).
Das sieht schon mal gut aus.

Ich würde die "kurzen" Gleichungen zuerst nutzen.

III) f'(10)=0
... eingesetzt und vereinfacht ...
0=300a+20b+c

IV) f'(30)=0
.. eingestzt und vereinfacht ...
JETZT DU ... ?





00Student00

00Student00 aktiv_icon

22:02 Uhr, 11.08.2014

Antworten
okay gut.

Wollte nur ebend bescheid geben, dass wir in der Schule das Gauß-Verfahren noch nicht gemacht haben. Hab im Internet gelesen, dass man es damit auch machen könnte.

Also

IV) 0=2700a+60b+cf'(30)=0
Antwort
Ma-Ma

Ma-Ma aktiv_icon

22:09 Uhr, 11.08.2014

Antworten
Ja, ohne Gauss, hatte ich auch vor.

III) 0=300a+20b+c
IV) 0=2700a+60b+c
-------------

Variable c rausschmeißen ...

IV - III) 0=...?

-------
Anschließend nach b umstellen.
b=... ?





00Student00

00Student00 aktiv_icon

22:15 Uhr, 11.08.2014

Antworten
III) 0=300a+20b+c
IV) 0=2700a+60b+c

-----------

2700a+60b+c=0
300a+20b+c=0

2400a+40b=0|-2400a
40b=-2400a|:40
b=-60a

ist das so richtig?
Antwort
Ma-Ma

Ma-Ma aktiv_icon

22:23 Uhr, 11.08.2014

Antworten
Hab ich auch.
Deine Zwischenergebnisse immer schön markieren, damit Du sie später schnell wiederfindest.

------------------
Mein ganz persönlicher Favorit beim Weiterrechnen wäre so:

10*III) 0=3000a+200b+10c
II) 0=1000a+100b+10c-6

Dann wieder c eliminiereen.

(Achtung: Ich habe schon mal bis Ende gerechnet, jedoch irgendwo einen Schusselfehler. Bitte alle Angaben auch selber nachrechnen!)



00Student00

00Student00 aktiv_icon

22:30 Uhr, 11.08.2014

Antworten
Ja ich schreibe die Ergebnisse alle gerade auf Papier mit :-)

------

wieso hast du bei II) noch -6 da stehen?

ohne diese -6 hätte ich das raus:

2000a+100b=-10
Antwort
Ma-Ma

Ma-Ma aktiv_icon

22:40 Uhr, 11.08.2014

Antworten
Bedingung II) f'(10)=10

10=1000a+100b+10c+4........ |-10
0=1000a+100b+10c-6

Prüfe bitte auch nochmal.
---------
Nebenbei bemerkt: Du siehst, wie schön es ist, die Bedingungen und Gleichungen sauber aufzuschreiben mit I), II), III) und IV).

Wir können immer konkret sagen, an welcher Bedingung/Gleichung wir arbeiten.


00Student00

00Student00 aktiv_icon

22:47 Uhr, 11.08.2014

Antworten
Achso.

mit -10 ist das logisch

Also:

III.) - II.)

3000a+200b+10c=0
1000a+100b+10c+4=10|-10
1000a+100b+10c-6=0


III.)3000a +200b+10c=0
II.) 1000a+100b+10c-6=0

2000a+100b-6=0|+6
2000a+100b=6|-100b
2000a=6-100b|:2000
a=0,003-0,05b

so ok?

------

ja finde ich auch gut :-)






Antwort
Ma-Ma

Ma-Ma aktiv_icon

22:49 Uhr, 11.08.2014

Antworten
Moment bitte, ich rechne Deinen Weg nach ...
Antwort
Ma-Ma

Ma-Ma aktiv_icon

22:58 Uhr, 11.08.2014

Antworten
10*III.) 0=3000a+200b+10c
II) 0=1000a+100b+10c-6
---------------------------------

10*III.) - II.)
VORZEICHEN im letzen Term beachten! Bitte nochmal prüfen.

----------
Nur subtrahieren, dann stopp.



00Student00

00Student00 aktiv_icon

23:02 Uhr, 11.08.2014

Antworten

III.) 3000a+200b+10c=0
II.) 1000a+100b+10c6=0

2000a+100b6=0

----

hatte den Beitrag nochmal bearbeitet.
Ist es so ok?



Antwort
Ma-Ma

Ma-Ma aktiv_icon

23:05 Uhr, 11.08.2014

Antworten
0-(-6)=+6
00Student00

00Student00 aktiv_icon

23:08 Uhr, 11.08.2014

Antworten
Ahhhh

----


III.) 3000a+200b+10c=0
II.) 1000a+100b+10c6=0

2000a+100b+6=0


Antwort
Ma-Ma

Ma-Ma aktiv_icon

23:16 Uhr, 11.08.2014

Antworten
Jepp, habe ich auch.
Wir haben jetzt zwei Gleichungen, in denen nur a und b vorkommen.

-----------------
10*III.) - II.)...... 0=2000a+100b+6
----------------
und

-----------
IV.) - III.) ..... b=-60a....... (siehe 22:15 Uhr)
----------

(Zwischenergebnisse immer schön einrahmen, dann findest Du sie auf Deinem Blatt auch schnell wieder).

Setze nun b=-60a ein und Du hast a.
00Student00

00Student00 aktiv_icon

23:22 Uhr, 11.08.2014

Antworten
Also ich hoffe ich hab das jetzt richtig verstanden:

2000a+100b+6=0|b=-60a
2000a+100(-60a)+6=0
2000a-6000a+6=0
-4000a+6=0|-6
-4000a=-6|:(-4000)
a=0,0015

stimmt das?
Antwort
Ma-Ma

Ma-Ma aktiv_icon

23:28 Uhr, 11.08.2014

Antworten
Deine Vorgehensweise ist richtig,
a=64000=32000=0,0015

Nun b berechnen.



00Student00

00Student00 aktiv_icon

23:31 Uhr, 11.08.2014

Antworten
Perfekt :-)

b=-60a
b=-600,0015
b=-0,09
Antwort
Ma-Ma

Ma-Ma aktiv_icon

23:35 Uhr, 11.08.2014

Antworten
JA.

Nun suche Dir eine Gleichung aus, um c zu berechnen.
(Ich hatte III) gewählt.)


Antwort
Ma-Ma

Ma-Ma aktiv_icon

23:41 Uhr, 11.08.2014

Antworten
Hier der Graph. (Meinen Schusselfehler habe ich inzwischen auch gefunden, hatte eine Null verschluckt... )


heute
00Student00

00Student00 aktiv_icon

23:42 Uhr, 11.08.2014

Antworten
Habs mal mit II und mit III getestet und es kam beides mal das gleiche raus :-)

III.)

300a+20b+c=0

3000,0015+20-0,09+c=0
0,45-1,8+c=0
-1,35+c=0|+1,35
c=1,35

:-)

also haben wir jetzt alle 4 Variablen:

a=0,0015
b=-0,09
c=1,35
d=4

und was mach ich jetzt? :-)
Antwort
Ma-Ma

Ma-Ma aktiv_icon

23:44 Uhr, 11.08.2014

Antworten
"und was mach ich jetzt? :-)"
Sorry, absolut blöde Frage ....

f(x)=ax3+bx2+cx+d

Wie wär´s mit Einsetzen der Variablen ?


00Student00

00Student00 aktiv_icon

23:46 Uhr, 11.08.2014

Antworten
ja hatte ich mir auch gedacht :-D)

okay gut :-)

f(x)=0,0015x3-0,09x2+1,35x+4

Vielen lieben Dank für deine Hilfe

Ich hoffe ich habe es jetzt verstanden und werde morgen weiter üben.

DANKE
Frage beantwortet
00Student00

00Student00 aktiv_icon

23:48 Uhr, 11.08.2014

Antworten
:-)
Antwort
Ma-Ma

Ma-Ma aktiv_icon

23:48 Uhr, 11.08.2014

Antworten
Bevor Du Dich jetzt ausloggst ....

Gehe systematisch vor:
1) Anzahl der Variablen = Anzahl der Bedingungen = Anzahl der Gleichungen
2) Saubere Bezeichnungen mit I), II) usw.
3) Auffälliges markieren wichtiger Zwischenergebnisse

-----------------
Falls Du Lust hast (ich nicht), kannst Du das Ganze ja mal ohne P3, sondern mit P4 ausrechenen.

00Student00

00Student00 aktiv_icon

23:49 Uhr, 11.08.2014

Antworten
Ja okay das merke ich mir :-)

ja kann ich gerne mal morgen machen :-)
Antwort
Ma-Ma

Ma-Ma aktiv_icon

23:50 Uhr, 11.08.2014

Antworten
Gute Nacht .... hat Spass gemacht mit Dir ! LG Ma-Ma
----------

Nachtrag:
"Ich bräuchte bitte einen kompletten Lösungsweg."
Neeeee, Du bist viel zu gut, um eine Komplettlösung nur abschreiben zu wollen ...