Mathematik online lernen im Mathe-Forum. Nachhilfe online
Startseite » Forum » Lagrange Identität

Lagrange Identität

Universität / Fachhochschule

Zufallsvariablen

Tags: Lagrange-Identität, Zufallsvariablen

 
Antworten Neue Frage stellen Im Forum suchen
Neue Frage
TopProtet

TopProtet aktiv_icon

21:25 Uhr, 15.10.2021

Antworten
Zeigen Sie, dass die Lagrange-Identität gilt, nämlich dass für alle Zahlen a1,a2,...,an
und b1,b2,...,bn gilt:

(i=1n ai^2) )(i=1n bi ^2)-(i=1n ai bi)2=i=1n-1j=I+1n (ai bj - aj bi)^2

(Keine Ahnung warum die eine Klammer so komisch dargestellt wird)

b.) Benützen Sie außerdem diese Identität um zu zeigen, dass das Quadrat des Korrelationskoeffizienten genau 1 ist, wenn und nur wenn alle Beobachtungspunkte auf einer Geraden liegen.

Ich brauche nur bei b Hilfe, und zwar habe ich eine Lösung, jedoch sobald die Lagrange Identität in dieser verwendet wird bin ich etwas verwirrt. Kann sein das es da ein paar Fehler gibt, da dass 1n einfach verschwindet bzw nur mehr beim Yi vorkommt. Desweiteren verstehe ich nicht woher die 1 kommt, wird da einfach herausgehoben, aber da stellt sich wieder di Frage wo das 1n hinkommt...

Vielen Dank!

5.9
5.9_2
Antwort
HAL9000

HAL9000 aktiv_icon

22:52 Uhr, 15.10.2021

Antworten
Da sind einfach einige Fehler in dem Scan:

Das 1n im Zähler in der vorletzten Zeile gehört gestrichen. In derselben Zeile ganz hinten im Zähler in der Doppelsumme muss der Summand (XiYj-XjYi)2 statt (XiYj-XjYi) lauten. Dieses Quadrat fehlt dann auch in der letzten Zeile. Und auch im zweiten Scan fehlen erneut mehrfach die Quadrate - scheint dann doch kein reiner Schreib- sondern eher ein Folgefehler zu sein.

TopProtet

TopProtet aktiv_icon

10:28 Uhr, 16.10.2021

Antworten
Okay, danke hab ich mir schon gedacht...

Wenn dann jedoch das Quadrat im Zähler bleibt kann man dann trotzdem schließen, dass der Term ganz am Ende 0 wird? Und wenn ja wieso?
Antwort
HAL9000

HAL9000 aktiv_icon

08:36 Uhr, 17.10.2021

Antworten
Da steht doch auf dem zweiten Blatt!!!

Denn aus (XimXj-XjmXi)=0 für alle i,j folgt selbstverständlich auch (XimXj-XjmXi)2=0.


P.S.: Ehrlich gesagt drängt sich mir hier langsam folgender Eindruck auf: Du solltest mal versuchen die Aufgaben (wenigstens einige) zu lösen, ohne gleich auf diese Musterlösungen zu schauen. Denn dieses Umgehen der Notwendigkeit, sich mal mit dem Problem wirklich zu befassen, scheint dann deine Fähigkeit zum Problemlösen soweit herabzusetzen, dass du am Ende nicht mal diese quasi Komplettlösungen kapierst.


Diese Frage wurde automatisch geschlossen, da der Fragesteller kein Interesse mehr an der Frage gezeigt hat.