Mathematik online lernen im Mathe-Forum. Nachhilfe online
Startseite » Forum » Mannigfaltigkeit

Mannigfaltigkeit

Universität / Fachhochschule

Funktionen

Tags: Funktion

 
Antworten Neue Frage stellen Im Forum suchen
Neue Frage
Bernd97

Bernd97 aktiv_icon

18:14 Uhr, 01.07.2017

Antworten
Wie zeige ich die unten stehenden Aussagen am besten? LG

Ist A:n+mm linear und surjektiv, so ist A-1(0)= kern(A) eine Mannigfaltigkeit der Dimension n und Kondension m.


Für 0sn ist ss×{0}n eine Mannigfaltigkeit der Dimension s und Kondension n-s.


Definition Mannigfaltigkeit:
Eine nichtleere Teilmenge M des n+m mit n0,m1 heißt Mannigfaltigkeit der Kondension m,
wenn es eine offene Umgebung U von MRn+m und eine C1 -Abbildung f:Um ohne singuläre Punkte gibt, so dass M=f-1(0)={xU|f(x)=0}.

Für alle, die mir helfen möchten (automatisch von OnlineMathe generiert):
"Ich benötige bitte nur das Ergebnis und keinen längeren Lösungsweg."
Hierzu passend bei OnlineMathe:
Funktion (Mathematischer Grundbegriff)

Online-Übungen (Übungsaufgaben) bei unterricht.de:
 
Online-Nachhilfe in Mathematik
Antwort
PhantomV

PhantomV aktiv_icon

21:03 Uhr, 01.07.2017

Antworten
Hi,

die Aussagen zeigst du am besten mit der Definition einer Mannigfaltigkeit, bzw. das
was du als Definition da hast. Im ersten Beispiel wähle doch als Abbildung f die Abbildung A
und prüfe ob diese alle Eigenschaften erfüllt, wie zB C1 und keine singulären Punkte etc.
PS: Es heißt außerdem Kodimension nicht Kondension.

Gruß PhantomV
Diese Frage wurde automatisch geschlossen, da der Fragesteller kein Interesse mehr an der Frage gezeigt hat.