Mathematik online lernen im Mathe-Forum. Nachhilfe online
Startseite » Forum » Parabell, Normalform, Scheitelpunktform

Parabell, Normalform, Scheitelpunktform

Schüler Fachschulen, 11. Klassenstufe

Tags: Übriges

 
Antworten Neue Frage stellen Im Forum suchen
Neue Frage
anonymous

anonymous

19:39 Uhr, 10.10.2006

Antworten
Hallo, wer von euch kann mir bei folgender Aufgabe helfen?



Soll folgendes in die Scheitelpunktform bringen.

y= -x^2+8



Da das x fehlt, verstehe ich das nicht. Wer kann mir helfen?

Danke, für alle Antworten.
Hierzu passend bei OnlineMathe:
Parabel (Mathematischer Grundbegriff)
Online-Nachhilfe in Mathematik
Antwort
m-at-he

m-at-he

03:36 Uhr, 11.10.2006

Antworten
Hallo,



Du hast ein x, Du siehst es bloß nicht. Ich führe Dir den kompletten Weg mal mit dem sichtbar gemachten x vor und Du wirst das Prinzip in Zukunft kennen, so daß Du von der gegebenen Funktion aus die Scheitelpunktform ermitteln kannst, ohne das x erst sichtbar zu machen:



y = -x^2 + 8 ; das Minuszeichen "ausklammern" und x sichtbar machen

y = (-1)*(x^2 + 0*x) + 8 ; quadratische Ergänzung nach Schema F

y = (-1)*(x^2 + 2*0/2*x + (0/2)^2 - (0/2)^2) + 8 ; negative Ergänzung ausklammern

y = (-1)*(x + 0/2)^2 - (-0/2)^2 + 8 ; bestmöglich zusammenfassen

y = (-1)*(x + 0)^2 + 0 + 8

y = (-1)*x^2 + 8



Mit anderen Worten: Du hast bereits die Scheitelpunktform! Der Scheitel ist (0/8) (ganz genau (-0/8), aber -0 ist halt gleich 0).



Ab sofort wirst Du also nie mehr eine Parabel in Scheitelpunktform bringen wollen, bei der "das x fehlt"!
Frage beantwortet
nina

nina

07:48 Uhr, 11.10.2006

Antworten
Danke, habe ich verstanden



Nina