Mycha 
19:41 Uhr, 25.06.2009
|
hallo,
ich suche eine allgemeine Variablen-Gleichung für die Querschnittskurve eines Parabolspiegels, abhängig von der Höhe des Brennpunktes vom Scheitelpunkt der Querschnittskurve sowie vom Durchmesser der Parabolöffnung.
Hab natürlich zuerst bei Wikipedia, und hier im Forum geschaut wegen parabolspiegel-funktionen.
Keine der hier gefundenen 5 Fragen und Antworten helfen mir weiter.
mir fällt da keine vernünftiger Ansatz ein, kann mir nur vorstellen, dass bei parallel einfallendem licht oder strahlen die parabelkurve eine Endpunkte haben muss, um noch den Brennpunkt treffen zu können. Wie ermittelt man diese und auch den Verlauf der Parabel.
Wie leitet man die Parabelkurve für eine solche Parabolkurve her?
war mal eine Hausaufgabe, wurde aber nie gelöst, und ich würds aber schon sehr gern wissen. Ein Buch dazu hab ich auch noch nicht gefunden, in dem es verständlich genug beschrieben steht.
Vielen vielen Dank:-)
mycha
Für alle, die mir helfen möchten (automatisch von OnlineMathe generiert): "Ich möchte die Lösung in Zusammenarbeit mit anderen erstellen." |
|
DK2ZA 
22:54 Uhr, 25.06.2009
|
Du betrachtest eine nach oben offene Parabel, deren Scheitelpunkt ist.
Ihre Gleichung lautet .
Von oben kommen parallel zur y-Achse Lichtstrahlen, die an der Parabel reflektiert werden und dann durch den Brennpunkt gehen. Die Höhe des Brennpunktes über dem Scheitelpunkt lässt sich leicht herausfinden. Man muss dazu nur die Stelle suchen, an welcher die Steigung der Parabel genau 1 ist (Steigungswinkel 45°). Dort wird nämlich der einfallende Lichtstrahl so reflektiert, dass er parallel zur x-Achse verläuft. Der Brennpunkt befindet sich also in dieser Höhe.
Der zugehörige y-Wert ist
Dies ist die Höhe des Brennpunktes:
Da vorgegeben ist, brauchen wir
Die Gleichung der Parabel lautet also
Der Durchmesser der Parabelöffnung kann unabhängig von beliebig gewählt werden.
GRUSS, DK2ZA
|
Mycha 
11:43 Uhr, 26.06.2009
|
hi und vielen Dank für Deine Zeit und mühevolle Antwort.
hab sie mir schon durchgelesen und versucht nachzuvollziehen, hatte aber leider noch nicht die ruhige Minute dafür. vielleicht auf die schnelle, was ist "a" hier nochmal?
(hab hier vielleicht grad nicht die richtige anzeige-einstellung für formeln)
werde sie mir möglichst bald nochmal in ruhe reinziehen.
aber nochmals vielen Dank:-),
mycha
|
DK2ZA 
11:46 Uhr, 26.06.2009
|
a ist der Formfaktor der Parabel. Durch a wird bestimmt, wie schlank die Parabel ist.
GRUSS, DK2ZA
|
Mycha 
12:15 Uhr, 26.06.2009
|
ja,
also das hab ich mir auch schon gedacht, dass es der Formfaktor sein sollte, aber mein browser zeigt mir alles etwas komisch an, war mir deswegen nicht so sicher.
muss mir glaub ich mal den matheplayer runterziehn.
daher danke nochmals :-)).
viele Grüße,
mycha
|