Mathematik online lernen im Mathe-Forum. Nachhilfe online
Startseite » Forum » Rechnen Mit Vektoren : X bestimmen Klammern auflö

Rechnen Mit Vektoren : X bestimmen Klammern auflö

Schüler Gymnasium, 12. Klassenstufe

Tags: Klammern, Vektoren, Vorzeichen

 
Antworten Neue Frage stellen Im Forum suchen
Neue Frage
farmerbob

farmerbob aktiv_icon

13:56 Uhr, 21.03.2009

Antworten

Hallo , ich habe ein kleines aber dringendes Probelem , bei den Rechnen mit Vektoren speziell mit dem Klammern auflösen.

Mein Problem ist wie folgt : Also ich soll eine Gleichung mit Vektoren nach x auflösen , das ist ansich kein Problem , was mir dann aber Probleme macht ist das Auflösen einer Klammer :

Hab leider diese Vektorklammer nicht bei den Formeln hier gefunden.

Das ganze sieht so aus -3* ( Vektorx - Vektor (von 1 , -1 , 2 ))

SO , die Vektoren in der Klammer müsste man ja jetzt alle mal -3 nehmen , bei Vektor x ist das auch kein Problem , da steht dann : - Vektor x

Aber wie funktioniert das , wenn man den Vektor schon mit dem Komponenten gegeben hat, was muss man da machen , zuerst habe ich gedacht man muss bei beiden die Vorzeichen verändern beim Vektor ansich , und auch bei den Komponenten , also das da steht wenn man die Klammer auflöst :

-Vektor x + Vektor von (-3 , 3 , -6 )

Das schiehn auch zu stimmen , dann hat mich jedoch die nächste Aufgabe verwirrt:

Der Rest der Aufgabe war wieder klar nur die eine Klammmer macht mich fertig :

-2*(Vektorx + Vektor von (3 , 1, 2)

Wenn ich jetzt wieder das aus Aufgabe 1 anwende müsste doch nach dem Auflösen das hier rauskommen : -2Vektor x - Vektor von (-6 , -2 , -4 ) .

Jedoch stimmt das irgentwie nicht , dass richtige Ergebnis erhält man nur , wenn das hier rauskommt: -2vektorx + ( -6 , -2 , -4 )

Also ihr seht ja hier mein Problem, es geht immer um das Vorzeichen , vor dem Vektor mit den Komponenten.

Da blick ich irgentwie nicht durch , das ergibt irgnetwie keinen Sinn .

Könntet ihr mir vll eine allgemein gültige Regel für das Auflösen , solcher Klammern geben?

Hier nochmal die kompletten Aufgaben ( nicht nur der Ausschnitt wie oben)

a.) 4* Vektorx = 2* Vektorx - 3 * (vektorx - Vektor von ( 1, -1 , 2) ) + Vektor von ( 3 ,0 ,1


b.) 3* Vektorx - 2* ( Vektorx + Vektor von ( 3 , 1 , 2 ) )= 5* ( Vektor von (3 , 0 , 1) - 4* Vektor x)


Für alle, die mir helfen möchten (automatisch von OnlineMathe generiert):
"Ich möchte die Lösung in Zusammenarbeit mit anderen erstellen."
Hierzu passend bei OnlineMathe:
Online-Nachhilfe in Mathematik
Antwort
jakob190590

jakob190590 aktiv_icon

15:00 Uhr, 21.03.2009

Antworten
also allgemein:

k*vec(-3,2,-6)=vec(-3k,2k,-6k)
das heißt zB.
-3*(-vec(-3,2,-6))=-vec(9,-6,24)
farmerbob

farmerbob aktiv_icon

15:08 Uhr, 21.03.2009

Antworten

das heißt also , das Vorzeichen des Vektors bleibt immer gleich , nur die Vorzeichen der Komponenten ändern sich???

Antwort
jakob190590

jakob190590 aktiv_icon

16:12 Uhr, 21.03.2009

Antworten
ja, aber es gibt noch eine einfache Regel (die auch gilt):

vec(3,4,-2)=-vec(-3,-4,2)

schau dir das mal an... dann solltest du die aufgabe lösen können
farmerbob

farmerbob aktiv_icon

16:57 Uhr, 21.03.2009

Antworten

ok danke , ich werds dann gleich mal versuchen und nochmal bescheid sagen obs funktioniert hat.

farmerbob

farmerbob aktiv_icon

17:54 Uhr, 21.03.2009

Antworten

Ahhh , hab meinen Fehler grad selbst gut erkannt ,

wenn da steht -vektor1( x , y , z) + vektor , dann muss ich den vektor1 zuerst positiv machen bevor ich weiterrechne , da das - davor eigentlich für -1*vektor1 steht und ja Punkt vor Strich gilt.

Diese Frage wurde automatisch geschlossen, da der Fragesteller kein Interesse mehr an der Frage gezeigt hat.