Partner von azubiworld.com - Logo
 
Mathematik online lernen im Mathe-Forum. Nachhilfe online
Startseite » Forum » Rechnen mit ganzen Zahlen

Rechnen mit ganzen Zahlen

Universität / Fachhochschule

Tags: Computer

 
Antworten Neue Frage stellen Im Forum suchen
Neue Frage
t-bus

t-bus aktiv_icon

09:15 Uhr, 27.03.2020

Antworten
Hallo,
ich bin mir nicht sicher, ob mir jemanden in diesem Forum helfen kann, aber ich probiere es einfach mal...


Ich beschäftige mich aktuell mit der Computerarithmetik der ganzen Zahlen

Außerdem habe ich mich mit der Effizienz der Addition, Multiplikation nach der Schulmethode beschäftigt. Diese wird aber immer nur für das Rechnen mit positiven ganzen Zahlen erläutert..

Warum werden die negativen Zahlen so außer Acht gelassen?



Für alle, die mir helfen möchten (automatisch von OnlineMathe generiert):
"Ich benötige bitte nur das Ergebnis und keinen längeren Lösungsweg."
Antwort
ermanus

ermanus aktiv_icon

09:29 Uhr, 27.03.2020

Antworten
Hallo,

vielleicht kannst du damit etwas anfangen?
de.wikipedia.org/wiki/Einerkomplement

Gruß ermanus
t-bus

t-bus aktiv_icon

10:45 Uhr, 27.03.2020

Antworten
Hallo,
vielen Dank für deine Antwort.
Ich lese mir den Artikel später einmal durch. Bisher habe ich mich nur mit dem Zweierkomplement beschäftigt.
Im Anhang füge ich ein noch ein Bild ein. Darauf bezieht sich meine Frage. Ich finde es total komisch, warum man das Kapitel Algorithmen für GANZE ZAHLEN nennt und dann aber das Laufzeitverhalten der Addition nur für zwei natürliche Zahlen a und b betrachtet...


Kann mir jemand darauf eine Antwort geben ?

Ich muss aktuell eine Ausarbeitung über das Thema schreiben... dabei sollte der Fokus auf dem mathematischen Teil liegen





Frage 1
t-bus

t-bus aktiv_icon

10:50 Uhr, 27.03.2020

Antworten
Außerdem habe ich in einem anderen Buch, welches mit der Programmiersprache Mathematica arbeitet, folgende Begründung gefunden, die im Anhang zu finden ist.

Die Begründung ist mir jedoch noch nicht ganz klar. Geht es hier auch um das Einerkomplement ?

Ich kenne mich mit Programmiersprachen auch leider gar nicht aus..

Frage 2
Antwort
ermanus

ermanus aktiv_icon

10:50 Uhr, 27.03.2020

Antworten
Die Subtraktion wird durch die Addition einer Zahl mit dem 1-er Komplement
(im 10-er-System mit dem 9-er Komplement) der zweiten Zahl realisiert.
Da die Komplementbildung laufzeittechnisch kaum ins Gewicht fällt,
reicht es, die Addition zu betrachten.
t-bus

t-bus aktiv_icon

10:52 Uhr, 27.03.2020

Antworten
Jaa so ähnlich verhält es sich auch mit dem Zweierkomplement.
Da wird 2-4 zu einer Addition mit dem Zweierkomplement von -4.

Wie verhält es sich mit der Multiplikation und Division ?
Antwort
ermanus

ermanus aktiv_icon

10:55 Uhr, 27.03.2020

Antworten
Hier ist die Vorzeichenbehaftung ja geradezu trivial.
Man kann die Vorzeichenregel gesondert behandeln ( - mal - = +, etc.)
und muss nur die Absolutbeträge (nat. Zahlen) multiplizieren / dividieren.
t-bus

t-bus aktiv_icon

10:58 Uhr, 27.03.2020

Antworten
Was genau meinst du mit Vorzeichenbehaftung?

Warum kann ich das Vorzeichen gesondert betrachten ?

Wie macht der Computer es denn ? Oder ist das abhängig von der Programmiersprache ?

mhhhn ….

vielleicht kannst du das etwas mehr ausführen ?

Mich interessiert vor allem, wie der Computer das so macht...
Antwort
ermanus

ermanus aktiv_icon

11:04 Uhr, 27.03.2020

Antworten
wenn du schriftlich (-312)*(+528) rechnest, rechnest du doch auch
(-)*(+)=(-) und 312*528, etc. etc.
Antwort
ermanus

ermanus aktiv_icon

11:11 Uhr, 27.03.2020

Antworten
Bei binär codierten Ganzzahlen wird das Vorzeichen häufig im führenden
Bit dargestellt: 0=positiv, 1=negativ.
Seien v1,v2 die Vorzeichenbits zweier Zahlen, dann hat das Vorzeichenbit
des Produktes / Quotienten den Wert
(v1 xor v2).
t-bus

t-bus aktiv_icon

14:25 Uhr, 27.03.2020

Antworten
Was du schreibst @ermanus habe ich glaube ich schon mal gelesen.

Man bestimmt die binäre Länge einer positiven ganzen Zahlen a mit Gaußklammer [log(a)]+1.
Die binäre Länge einer ganzen Zahlbhingegen ist die binäre Länge ihres Absolutbetrags +1, also Gaußklammer [log(b)]+2.
Betrachtet man also das führende Bit als Vorzeichenbit, wobei 0:=+ und 1:=-

Normalerweise gilt aber --=+. Hier ist aber 11=1. ?



Antwort
ermanus

ermanus aktiv_icon

15:18 Uhr, 27.03.2020

Antworten
0 xor 0 = 0
0 xor 1 = 1
1 xor 0 = 1
1 xor 1 = 0.
Das ist die Wahrheitstabelle von "xor".

Du kannst natürlich auch die Vorzeichenbits ohne Übertrag addieren,
sozusagen modulo 2 rechnen:

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0.

Diese Frage wurde automatisch geschlossen, da der Fragesteller kein Interesse mehr an der Frage gezeigt hat.