|
Guten Abend,
ich hätte eine Frage, und zwar wie ich bei mit modulo 7 die Urbilder von berechnen kann. Und zwar habe ich bisher folgendes berechnet:
und
die Urbilder von und 6 habe ich ausgerechnet indem ich die Umkehrfunktion anwende . oder
Das funktioniert aber für die Werte nicht, da nicht Element von ist.
Vielen Dank im Voraus :-)
Für alle, die mir helfen möchten (automatisch von OnlineMathe generiert): "Ich möchte die Lösung in Zusammenarbeit mit anderen erstellen." |
|
|
Hallo, das Inverse von modulo ist ; denn modulo . Gruß ermanus
|
|
Könntest du mir das vielleicht mit einem weiterem Beispiel erklären aus dieser Aufgabe?
|
ledum 
23:07 Uhr, 13.11.2018
|
Hallo wenn das eine Primzahlköper ist wie gibt es zu JEDEM Element ein Inverses. in ist inv(3)als Gibt es ε>0 definiert. hallo denn in gibt es keine Brüche ,aber inverse; inv(1)=1, inv(2)=4 denn inv(3)=5 denn (inv6)=6 usw, statt zz dividieren wie in oder muss man mit den Inversen multiplizieren versuch selbst mal die Inversen Gruss ledum
|
|
ich habe jetzt verstanden, wie ich die Inversen rausbekomme, aber wie berechne ich das Urbild?
|
|
Hallo, da verstehe ich dein Problem nicht mehr so recht. Du hast doch selbst gesagt, dass "normalerweise" , also das Urbild von ist. Also setze dein ein ... Gruß ermanus
|
|
Jetzt habe ich es verstanden. Dankeschön!
|