Partner von azubiworld.com - Logo
 
Mathematik online lernen im Mathe-Forum. Nachhilfe online
Startseite » Forum » Verteilung von Teams auf 3 Gruppen

Verteilung von Teams auf 3 Gruppen

Universität / Fachhochschule

Zufallsvariablen

Tags: Kombinatorik, Verteilung, Zufallsvariablen

 
Antworten Neue Frage stellen Im Forum suchen
Neue Frage
naveex

naveex aktiv_icon

23:49 Uhr, 21.11.2020

Antworten
Aufgabe:

Es gibt 18 Fußballteams, wovon jedes zufällig in eine von 3 Gruppen platziert wird.
Jede Gruppe soll am Ende genau 6 Spieler umfassen. Die Teams werden von i=1,,18 nummeriert.

Ohne Beschränkung der Allgemeinheit betrachten wir Gruppe 1.
Sei Xmin eine Zufallsvariable, die Gruppe 1 die kleinste Teamnummer zuordnet.

Was ist die Verteilung von Xmin?

Versuch:

Wir bezeichnen G1 als die Menge aller Teamnummern aus Gruppe 1. Beispielsweise ist G1={8,4,3,9,5,12}.
Die kleinste Zahl in dieser Menge ist offensichtlich die 3, also ist Xmin=3 genau dann, wenn alle Teams mit Nummern j<3 Gruppe 2 oder 3 zugeordnet wurden.

Sei zusätzlich Ai das Ereignis, dass Team i der Gruppe 1 zugeordnet wird. Dann ist P(Ai)=13.
Umgekehrt, ist dann die Wahrscheinlichkeit, dass i nicht Gruppe 1 zugeordnet wird P(Ai¯)=1-P(Ai)=23.

Im Allgemeinen haben wir also
P(Xmin=k)=P(AkAk-1¯)

Meine Frage: Können wir P(Xmin=k)=P(Ak)P(Ak-1¯) schreiben?

Wenn nicht (was ich denke), wie kann ich diese Wahrscheinlichkeit berechnen?

Andererseits können wir beliebige Mengen {k,x2,x3,x4,x5,x6} betrachten und 5 Teamnummern von den übrigen oberen 18-k auswählen und erhalten dann eine der Binomialverteilung ähnliche Verteilung
P(Xmin=k)=18-k5(13)1(23)5

Kann mir jemand eines der Ergebnisses (am besten mit Erklärung) bestätigen? :-)

Für alle, die mir helfen möchten (automatisch von OnlineMathe generiert):
"Ich bräuchte bitte einen kompletten Lösungsweg." (setzt voraus, dass der Fragesteller alle seine Lösungsversuche zur Frage hinzufügt und sich aktiv an der Problemlösung beteiligt.)
Hierzu passend bei OnlineMathe:

Online-Übungen (Übungsaufgaben) bei unterricht.de:
 
Antwort
Matlog

Matlog aktiv_icon

12:12 Uhr, 22.11.2020

Antworten
Deine Lösungsversuche scheitern an folgender Tatsache, die du dir klar machen solltest:

Wenn du schon weisst, dass ein bestimmtes Team in Gruppe 1 ist, dann ist die Wahrscheinlichkeit, dass ein anderes Team (auch) drin ist, nicht mehr 13.
Deshalb sind die Ereignisse Ai nicht unabhängig und dein erster Versuch hat sich erledigt!

Das gleiche Problem beim zweiten Lösungsversuch: Die einzelnen Bernoulli-Versuche haben nicht die gleiche Trefferwahrscheinlichkeit. Wir haben also gar keine Binomialverteilung.

Trotzdem ist dein zweiter Ansatz doch schon sehr zielführend!
Ziehe doch einfach aus deinen 18 Teams 6 für Gruppe 1 heraus. Dies ist ein Laplaceexperiment. Die Anzahl aller Möglichkeiten ist einfach zu bestimmen. Die Anzahl der günstigen Fälle für das Ereignis Xmin=k hast du ja auch schon berechnet (indem du Team k fest in die Gruppe setzt und aus den Teams mit höherer Nummer noch 5 dazu wählst).
naveex

naveex aktiv_icon

15:28 Uhr, 22.11.2020

Antworten
Verstehe. Könnte man das irgendwie in Bezug zu den Ai's bringen? Vielleicht über eine Abwandlung der Siebformel oder macht es nur kombinatorisch einen Sinn?
Antwort
Roman-22

Roman-22

18:22 Uhr, 22.11.2020

Antworten
Eigentlich hat Matlog deine Frage doch schon beantwortet, oder?

Die WKT für X=k ist P(x=k)=18-k5186 für 1k13. Für k>13 ist die WKT natürlich Null.

P.S.: Die Klammern werden bei den Binomialkoeffizienten wegen eines Fehlers in der Forensoftware nicht angezeigt.
Antwort
Matlog

Matlog aktiv_icon

19:22 Uhr, 22.11.2020

Antworten
Zu deiner Idee mit den Ai:
Man könnte die Siebformel umstellen, aber ich sehe da überhaupt keine Erleichterung, eher das Gegenteil.
Vielleicht verstehe ich aber auch deine Idee dabei nicht.

Allerdings mal im Ernst:
Es gibt eine sehr einfache Lösung deiner Aufgabe! Warum dann noch nach komplizierten Alternativen suchen?

Diese Frage wurde automatisch geschlossen, da der Fragesteller kein Interesse mehr an der Frage gezeigt hat.