Mathematik online lernen im Mathe-Forum. Nachhilfe online
Startseite » Forum » Wahrscheinlichkeit bestimmter zahlen in einer Reih

Wahrscheinlichkeit bestimmter zahlen in einer Reih

Universität / Fachhochschule

Wahrscheinlichkeitsmaß

Tags: Reihen, Wahrscheinlichkeit

 
Antworten Neue Frage stellen Im Forum suchen
Neue Frage
Hase-des-todes

Hase-des-todes aktiv_icon

16:46 Uhr, 21.11.2009

Antworten
Hallo, ich habe überhaupt keine Ahnung von Wahrscheinlichkeitsrechnung. Aber Leider weiß ich nicht wie mein Problem zu lösen ist.

Wie Wahrscheinlich ist es das bei einem 10 seitiges Würfel (mit den Zahlen 1 bis 10) und 5 mal Würfel die Zahlenfolge "12345" auftaucht?
Also als erstes muss die "1" gewürfelt werden dann die "2" usw.

Ich hatte irgendwo gelesen das wenn es nicht auf die Reihenfolge ankommt so zu lösen ist: (110)5=0,001%

Wäre echt nett wenn mit jemand sagt wie man dies löst.



Für alle, die mir helfen möchten (automatisch von OnlineMathe generiert):
"Ich benötige bitte nur das Ergebnis und keinen längeren Lösungsweg."
Online-Nachhilfe in Mathematik
Antwort
Vorzeichenfehler

Vorzeichenfehler aktiv_icon

17:22 Uhr, 21.11.2009

Antworten
als erstes rechnest du die warscheinlichkeit aus wie hoch die ist um GENAU die zahlenfolge 12345 zu erreichen:


(o,1)hoch5 =0,00001

Dann ermittelst du (da du ja die Würfel so anordnen darfst wie du willst) wie viele möglichkeiten es gibt also
12345
oder
21345
usw.

Und zwar mit der Formel:

5!=120

wenn du dass dann miteinander multiplizierst kommst du auf:
0,0012
was ja gerundet deinem Ergebnis entspricht

Ich hoffe ich konnte helfen
Hase-des-todes

Hase-des-todes aktiv_icon

17:32 Uhr, 21.11.2009

Antworten
Danke für deine Antwort, aber ich kann die Würfel nicht so anordnen wie ich das möchte.
Also ich würfel und dann muss eine 1 Gewürfelt werden dann würfel ich wieder und es muss die 2 Gewürfelt werden dann die 3 usw.
Antwort
Vorzeichenfehler

Vorzeichenfehler aktiv_icon

17:56 Uhr, 21.11.2009

Antworten
Dann ist es ja umso einfacher ... dann ist es ja nur der erste Teil meiner Rechnung

und für die Prozente multiplizierst du nur noch mit 100
(dann kommst du auch auf das ergebnis)
Hase-des-todes

Hase-des-todes aktiv_icon

18:04 Uhr, 21.11.2009

Antworten
das verstehe ich nicht, die chance eine bestimmte zahl zu würfel liegt bei 110. bei zwei zahlen multipliziert sich die Wahrscheinlichkeit auf 1100 aber unabhängig der reihenfolge. erst die 1 würfeln und dann die 2 ist schwieriger als wenn die reihenfolge egal ist.
Antwort
Vorzeichenfehler

Vorzeichenfehler aktiv_icon

18:35 Uhr, 21.11.2009

Antworten
Ja es ist schwieriger erst die eine zahl und dann die andere Zahl in der reihenfolge zu würfeln als wenn die reihenfolge egal ist.

nehmen wir mal vereinfacht nur die 1 und die 2 an.
wenn die Reihenfolge feststeht musst du eine 1 un ddann eine 2 würfeln.
Wenn die reihenfolge nciht feststeht kannst du erst die 2 und dann die 1 würfeln oder erst die 1 und dann die 2 würfeln die Chancen verdoppeln sich somit.

Bei der Stochastik kommtes pingelich genau auf die Formulierungen an (dass ist das blöde)


ich mache es mal am Baumdiagramm deutlich.
nehmen wir mal eine münze mit 1 und 2 deren verteilung gleich ist (also immer 50:50 Chance)

dann würde wenn die Aufgabe lautet werfen sie die Münze 2 nal und erzielen sie eine 1 und danach eine 2 dann könnte man über das baumdiagramm nur den weg zur eins und danach den weg zur 2 gehen.

Wenn aber da steht werfen sie eine 1 und eine 2 (mit 2 würfen) egal welche Reihenfolge, dann könnest du zusätzlich auch den wEg über die 2 und danach den weg zur 1 gehen.

(mal dir am besten so ein Baumdiagramm auf, hier geht das nich und da kannst du es am besten verstehen)
Frage beantwortet
Hase-des-todes

Hase-des-todes aktiv_icon

18:44 Uhr, 21.11.2009

Antworten
Hey danke für deine hilfe, ganz verstanden mit der Wahrscheinlichkeit habe ich das nicht aber das war auch nicht unbedingt das ziel meiner frage. Ich weiß jetzt für eine GENAUE Zahlenfolge benutzte ich (1/n)^(Anzahl Zeichen)