Partner von azubiworld.com - Logo
 
Mathematik online lernen im Mathe-Forum. Nachhilfe online
Startseite » Forum » grösstmöglicher Abstand zweier Punkte

grösstmöglicher Abstand zweier Punkte

Universität / Fachhochschule

Funktionalanalysis

Tags: Extremwertproblem, Funktionalanalysis

 
Antworten Neue Frage stellen Im Forum suchen
Neue Frage
3105jk

3105jk aktiv_icon

18:19 Uhr, 23.03.2020

Antworten
Die Tangente t(x):23x+23 und der Graph der Funktion f(x):3x2x2+1 schneiden sich in zwei Stellen x1 und x2 mit x1<x2.
Diese Schnittstellen habe ich schon finden können: x1:-2,x2:0.5

Nun verstehe ich folgenden Teil nicht:
Bestimmen Sie diejenige Stelle xmax, mit x1<xmax<x2, an der der Abstand der Graphen von f(x)und t(x)maximal wird. Berechnen Sie diesen maximalen Abstand.

Wäre toll, falls mir hier jemand weiterhelfen kann.
glg

Für alle, die mir helfen möchten (automatisch von OnlineMathe generiert):
"Ich möchte die Lösung in Zusammenarbeit mit anderen erstellen."
Antwort
pwmeyer

pwmeyer aktiv_icon

18:32 Uhr, 23.03.2020

Antworten
Hallo,

betrachte einfach die Funktion h(x):=t(x)-f(x) und bestimme deren Extremum.

Gruß pwm
Antwort
Respon

Respon aktiv_icon

18:39 Uhr, 23.03.2020

Antworten
Mit Abstand ist der Normalabstand gemeint. Du suchst einen Punkt auf dem Graphen von f(x), dessen Normalabstand zu t(x) ein Maximum ist.
Wie würdest du den Normalabstand eines Punktes von einer Geraden bestimmen ?
Antwort
pwmeyer

pwmeyer aktiv_icon

07:56 Uhr, 24.03.2020

Antworten
@ Respon:

"Mit Abstand ist der Normalabstand gemeint."

Da würde mich interessieren, was ein Normalabstand ist und woraus man entnehmen kann, dass das gemeint ist.

Gruß pwm
Antwort
Respon

Respon aktiv_icon

08:17 Uhr, 24.03.2020

Antworten
Siehe Definition : Abstand Punkt - Gerade

Abstand
Abstand02
Abstand03
Antwort
irrsinn07

irrsinn07 aktiv_icon

10:36 Uhr, 24.03.2020

Antworten
...deshalb unterscheidet man ja zwischen "Abstand" und "Entfernung". Die Bezeichnung "Normalabstand" ist mir noch nie begegnet.

@pwmeyer: dein Ansatz ist übrigens nicht zielführend
Antwort
Respon

Respon aktiv_icon

10:40 Uhr, 24.03.2020

Antworten
z.B.

www.mathe-lexikon.at/geometrie/grundlagen/geometrische-begriffe/normale/normalabstand.html

Ich habe das Beispiel mittels "Hessesche Normalform" gelöst
Antwort
irrsinn07

irrsinn07 aktiv_icon

10:42 Uhr, 24.03.2020

Antworten
dann vermute ich mal, dass dieser Begriff evtl. im österreichischen Sprachraum üblich ist - aber eigentlich will ich dieses Thema nicht vertiefen, hat ja mit der Aufgabe auch nichts zu tun...
Antwort
Respon

Respon aktiv_icon

10:44 Uhr, 24.03.2020

Antworten
... so ist es, so sei es !
Antwort
pwmeyer

pwmeyer aktiv_icon

12:07 Uhr, 24.03.2020

Antworten
Hallo,

es gibt 3 verschiedene Fragestellungen:

- man finde ein x, so dass |t(x)-f(x)| maximal wird.
- man finde einen Punkt P=(x,f(x)), so dass das Abstand von P zur Geraden t maximal wird.
- man finde einen Punkt P=(x,f(x)) und einen Punkt Q=(y,t(y)), so dass ||P-Q|| minimal ist.

Da in der Aufgabenstellung das Wort "Normalenabstand" nicht vorkommt, habe ich auf die 1. Bedeutung getippt.

Gruß pwm
Antwort
Stephan4

Stephan4

13:13 Uhr, 24.03.2020

Antworten
Die Frage nach einer Stelle x_max läßt vermuten, dass die beiden Abstandsdpunkte den selben x-Wert haben, der Abstandsvektor also senkrecht ist.

Nur bei waagrechtem Verlauf der beiden Graphen ist es der Normalabstand.

t ist aber an keiner Stelle waagrecht.

Mit Respons Feststellung "Mit Abstand ist der Normalabstand gemeint." ist die Frage nach x_max mE nicht beantwortbar.

Andererseits, wenn mit Abstand der Graphen die Differenz der Funktionswerte gemeint ist, dann ist x_max die Stelle im gegebenen Bereich des relativen Maximums der Differenz von f und g.

LG
Antwort
irrsinn07

irrsinn07 aktiv_icon

17:25 Uhr, 24.03.2020

Antworten
am besten holst du dir eine Lösungsidee durch Betrachten des Graphen - zeichne eine Parallele zur vorgegebenen Tangente und verschiebe sie solang, bis sie den Graphen berührt. Hat man den Berührpunkt bestimmt, so sucht man die Normale zur Tangente durch diesen Berührpunkt. Schnittpunkt S und Berührpunkt definieren den gesuchen Abstand.

man sieht auch sofort, dass es zwei solcher Berührpunkte gibt (beachte auch Punktsymmetrie)

p.s. die rechnerischen Werte sind ziemlich "glatt"

schau mal...

Graph
Aufg
Antwort
Roman-22

Roman-22

18:56 Uhr, 24.03.2020

Antworten
Da laut Aufgabenstellung die STELLE xmax gesucht ist, an der der Abstand zwischen t(x) und f(x) maximal ist, ist es wohl doch eher der Ansatz von pwmeyer, der zum Ziel xmax=-12 führt.
Der Aufgabensteller hätte es vl auch deutlicher ausdrücken können, hätte er "vertikaler Abstand" geschrieben. Wobei - wer sagt, dass die Ordinatenrichtung immer vertikal sein muss ;-)
Wäre es anders gemeint gewesen, hätte der Aufgabensteller präzisieren müssen, ob er die Stelle das Punktes auf t oder die Stelle des Punktes auf f meint. Da er das nicht macht, muss man davon ausgehen, dass es sich nur um eine Stelle, die beiden Punkten gemeinsam ist handelt, also eine gemeinsame x-Koordinate, und daher die Ordinatendifferenz maximal sein soll.

Der Begriff "Normalabstand" ist mir übrigens durchaus auch geläufig, allerdings die Unterscheidung zwischen "Abstand" und "Entfernung", welche Irrsinn angedeutet hatte, in diesem Zusammenhang aber nicht wirklich.

P.S.: Zufälligerweise gilt bei dieser Aufgabe, dass der Punkt (-0,5/-1) auf dem Graph von f(x) nicht nur den größten vertikalen Abstand vom Graphen von t(x) hat, sondern auch den größten Normalabstand.



Antwort
Stephan4

Stephan4

19:47 Uhr, 24.03.2020

Antworten
@Irrsinn07:
Interessante Berechnung. Leider hast Du die Frage nach xmax nicht beantwortet.

Und zuvor schreibst Du, dass pwmeyers Ansatz mit dem Vertikalabstand "übrigens nicht zielführend" ist. Auch hier fehlt eine Begründung.

@Roman-22:
Dass -0,5/-1 mit dem größten Normalabstand auch den größten Vertikalabstand zu t hat, ergit sich aus dem selben Anstieg wie t' an dieser Stelle. Wasr ist das ein Zufall?
Antwort
Roman-22

Roman-22

20:00 Uhr, 24.03.2020

Antworten
> Wasr ist das ein Zufall?
Zufall war wohl etwas irreführend formuliert ;-)
Der "Zufall" besteht hier darin, dass eine der beiden beteiligten Kurven "zufällig laut Angabe" eine Gerade ist.
Wäre weder f noch t linear, wäre die Frage nach dem maximalen Normalabstand aber auch deutlich schwieriger zu behandeln und wir würden dann mit den beiden hier aufgetauchten Interpretationen auch idR zu unterschiedlichen Stellen gelangen.

Antwort
irrsinn07

irrsinn07 aktiv_icon

01:23 Uhr, 25.03.2020

Antworten
ich melde mich letztmals, um Stephan4 zu antworten.

Wenn ich in einer Aufgabenstellung "Abstand" lese, dann ist es für mich das, was ihr als "Normalabstand" bezeichnet - insofern war mir sofort klar, dass pwmeyer´s Tipp hier keine Anwendung findet.

Auch bei eurer Interpretation kann ich in der Bezeichnung "x_max" keinen Sinn erkennen.

Kurz und gut: ein insgesamt unbefriedigender Aufgabentext...
Antwort
Roman-22

Roman-22

02:26 Uhr, 25.03.2020

Antworten
> Auch bei eurer Interpretation kann ich in der Bezeichnung "x_max" keinen Sinn erkennen.
Das geht aber vermutlich nur dir so.
Eine "Stelle", wie sie laut Angabe anzugeben ist, ist ein x-Wert und xmax ist eben die Stelle, an der der Abstand der beiden Punkte auf den Graphen von t und f (mit gleicher x-Koordinate xmax), also die Ordinatendifferenz, maximal ist.
Wie ich oben schon ausgeführt hatte ergibt xmax ohne weitere Spezifizierung eher bei deiner Interpretation wenig Sinn, da die Punkte auf den Graphen von t und f da ja unterschiedliche x-Koordinaten haben.

Aber da es 3105jk seit ihren Initalposting vor über einem Tag ohnedies nicht für nötig befunden hat, hier zu reagieren, scheint jede weiter Behandlung des Thread-Themas ohnedies obsolet zu sein.
Diese Frage wurde automatisch geschlossen, da der Fragesteller kein Interesse mehr an der Frage gezeigt hat.