|
Wie kann ich die flächenhöhe vom trapez berechnen wenn da zwei winkel a und gegeben sind. Bitte eine ausführliche Erklärung. Bis jetzt fand ich alles einfach außer diese Aufgabe. Danke im Voraus
Für alle, die mir helfen möchten (automatisch von OnlineMathe generiert): "Ich möchte die Lösung in Zusammenarbeit mit anderen erstellen." |
|
|
Es ist ein gleichschenkeliges Trapez !
|
anonymous
10:29 Uhr, 27.01.2017
|
Tipp: Du malst dir eine sinnvolle, hilfreiche Skizze vom Querschnitt (vom Trapez). Dann teilst du das Viereck in einfache Dreiecke. Nicht so, wie du mit dickem Kuli angedeutet hast. Sondern, wenn du geschickt vorgehst, strebst du rechtwinklige Dreiecke an. Wenn du die Grundseite (12cm) unten waagrecht hast, die Kopfseite (7cm) oben waagrecht, dann wird sich empfehlen, von einer oberen Ecke eine senkrechte "Höhe" auf die Grundseite zu malen. Das schafft dir rechtwinklige Dreiecke. Welche Größen dieses rechtwinkligen Dreiecks kennst du?
|
|
Hallo,
Tipp für Experten!
Zerschneide den Körper in kleinere Körper, die alle den selben Querschnitt in Form eines gleichschenkligen Trapezes haben, aber statt also 300cm, alle nur 30cm lang (oder tief?) sind. Dann stellst Du diese Teile auf die Trapezflächen so auf, dass immer zwei Teile mit den Trapezschenkeln direkt nebeneinander stehen und die beiden kürzeren Seiten und auch die beiden längeren Seiten immer direkt nebeneinander liegen. So bilden die Teile am Ende einen Körper, der 30cm hoch ist und in der Grundfläche außen ein regelmäßiges 10-Eck mit Seitenlänge 12cm und innen ein regelmäßiges 10-Eck mit Seitenlänge 7cm ist. Zusammen mit der Flächenformel für das 10-Eck ergibt sich die Grundfläche als:
Das Volumen ergibt sich demzufolge in als:
|
Diese Frage wurde automatisch geschlossen, da der Fragesteller kein Interesse mehr an der Frage gezeigt hat.
|