Mathematik online lernen im Mathe-Forum. Nachhilfe online
Startseite » Forum » Medikamentenkonzentration

Medikamentenkonzentration

Schüler Gymnasium, 13. Klassenstufe

Tags: Extrempunkte

 
Antworten Neue Frage stellen Im Forum suchen
Neue Frage
Tomekk03-90

Tomekk03-90 aktiv_icon

15:35 Uhr, 07.02.2009

Antworten
Hallo,
könnt ihr mir bitte bei folgendem Probelem helfen?

Gegeben ist die Funktion K(t)=0,16t(t+2)2, welche die Konzentration einens Medikaments im Blut beschreibt (mg/cm^3).
Wie könnte nun ein Funktionsgleichung aussehen, bei der nach 3 Stunden (t wird in Std. gemessen) die höchste Konzentration von 0,05 mg/cm^3 erreicht wird.

Ich hab bereits den Extrempunkt der oben genannten Funktion ausgerechnet. Der liegt bei 2 Stunden. Die Konzentration bei 2 Stunden liegt bei 0,02 mg/cm^3.

Gruß,
Thomas

Für alle, die mir helfen möchten (automatisch von OnlineMathe generiert):
"Ich bräuchte bitte einen kompletten Lösungsweg." (setzt voraus, dass der Fragesteller alle seine Lösungsversuche zur Frage hinzufügt und sich aktiv an der Problemlösung beteiligt.)
Hierzu passend bei OnlineMathe:
Online-Nachhilfe in Mathematik
Antwort
anonymous

anonymous

16:20 Uhr, 07.02.2009

Antworten
hi tomek
für den zeitpunkt des maximums ist die 2 im nenner veantwortlich
ersetze sie durch 3 und deim max kommt nach 3 std.
gleichzeitig läuft die max konz auf 0,01334
jetzt per dreisatz den faktor 0,16 ändern

k(t)=3,748t(t+3)2

einverstanden?
k.

Tomekk03-90

Tomekk03-90 aktiv_icon

16:33 Uhr, 07.02.2009

Antworten
hi,
wie kommst du da drauf, dass die 2 im nenner das extremum bestimmt?
Antwort
anonymous

anonymous

17:29 Uhr, 07.02.2009

Antworten
hi tomek
die erste abl. hat im zähler -0,16x2+0,64
sie wird 0 bei x=2 ort des max

vermutung:
die 2 im nenner ist dafür verantwortlich
also setze statt der 2 eine 3 ein, dann heißt der zähler der ableitg. -0,16x+48

nullsetzen führt auf x0=3

intuition!
gruß k.

Diese Frage wurde automatisch geschlossen, da der Fragesteller kein Interesse mehr an der Frage gezeigt hat.