Mathematik online lernen im Mathe-Forum. Nachhilfe online
Startseite » Forum » Warum sind diese Funkt. weder gerade noch ungerade

Warum sind diese Funkt. weder gerade noch ungerade

Universität / Fachhochschule

Funktionen

Tags: Funktion, Gerade, Ungerade, weder noch

 
Antworten Neue Frage stellen Im Forum suchen
Neue Frage
drmabuse

drmabuse aktiv_icon

18:14 Uhr, 10.03.2017

Antworten
Hallo,

meine Frage steht eigentlich schon in der Überschrift, aber ich stelle sie nochmal. Woran erkenne ich, dass eine Funktion weder gerade noch ungerade ist. Habe das Problem bei drei Aufgaben, wo ich das nicht nachvollziehen kann.

Aufgabe 1:

y=x/ x³-2x+5

mein Lösungsansatz ist der, dass wenn Zähler und Nenner beide entweder gerade oder beide ungerade sind, ich eine gerade Funktion habe.
wenn Zähler und Nenner unterschiedlich sind, also eines davon gerade und eines ungerade, habe ich eine ungerade Funktion.
In diesem Beispiel ist Zähler und Nenner beides ungerade, also ist diese Funktion laut dieser Theorie eine gerade Funktion. In der Lösung steht aber "weder noch". Warum? und wie kommt man darauf?


Aufgabe 2

y=cosx sin² x

Wenn ich hier f(x)=f(-x) prüfe habe ich:
cosx sin² x=cos-x sin² -x das hilft mir aber nicht weiter um auf die Lösung zu kommen.


Aufgabe 3

y=tanx+cosx

das gleiche Problem wie bei Aufgabe 2.
tanx+cosx=tan-x+cos-x
Hierzu passend bei OnlineMathe:
Funktion (Mathematischer Grundbegriff)

Online-Übungen (Übungsaufgaben) bei unterricht.de:
 
Online-Nachhilfe in Mathematik
Antwort
michaL

michaL aktiv_icon

18:21 Uhr, 10.03.2017

Antworten
Hallo,

ungerade Funktionen f implizieren f(0)=0 (sofern 0 im der Definitionsmenge liegt).
Daran kann man relativ schnell prüfen, ob eine Funktion ungerade ist.

Eine nicht gerade Funktion wird man wohl an einem Gegenbeispiel erkennen müssen.
Eine Alternative ist, die (allgemeine) Gültigkeit von f(x)=f(x)+f(-x)2 zu prüfen.
Das wird vermutlich aber auch nicht einfacher, als ein Gegenbeispiel zu finden.

Mfg Michael
Antwort
Roman-22

Roman-22

18:22 Uhr, 10.03.2017

Antworten
> In diesem Beispiel ist Zähler und Nenner beides ungerade,
FALSCH! Der Nenner ist ganz sicher keine ungerade Funktion!!
jedenfalls nicht, wenn der Nenner, wie ich vermute, x3-2x+5 lautet und nicht, so wie du das geschrieben hast, einfach nur x3 ist.

> In der Lösung steht aber "weder noch". Warum? und wie kommt man darauf?
Na, weil eben weder f(-x)=f(x), noch f(-x)=f(x) gilt. Setz einfach ein!

Was die anderen Aufgaben anlangt, so ist deine fehlende Klammersetzung schlicht inakzeptabel.
Du solltest wissen, ob sin,cos,tan gerade oder ungearde Funktionen sind und dann entsprechend Ausdrücke wie zB sin(-x)= oder cos(-x)= entsprechend vereinfachen.

drmabuse

drmabuse aktiv_icon

19:42 Uhr, 10.03.2017

Antworten
Also zur Aufgabe 1:

f(x)=f(-x)

-x/ -x³ -(-2x)+5=x/-2x+5

-x/ -x³ +2x+5=x/-2x+5


--f(x)f(-x)


f(-x)=-f(x)

-x/ -x³ +2x+5=x/-2x+5


---f(x)f(-x)




ok, hier sehe ich, dass die Funktion nicht gerade und auch nicht ungerade ist, muss ich das jeweils "zu Ende rechnen" ? Oder ist das Beweis genug?



Aufgabe 2:

f(x)=f(-x)

cosx sin² x=cos(-x)+ sin² (-x)

und

f(-x)=-f(x)

cos(-x)+ sin² (-x)=-(cosx+ sin² x)

inwiefern kann man das jetzt vereinfachen?

man könnte aus -(cosx)+ sin² x) vielleicht cosx- sin² x machen - ok, in der zweiten Prüfung wäre ja dann schon sichtbar, dass sich das Vorzeichen ändert und der zweite Fall dann schon mal nicht stimmen kann. meine Frage auch hier, wie weit muss ich da "rechnen" oder vereinfachen?
Vielleicht denke ich gerade zu kompliziert und in Wirklichkeit ist es ganz einfach....
Antwort
ledum

ledum aktiv_icon

20:01 Uhr, 10.03.2017

Antworten
Hallo
du springst zwischen M al und Plus, deine Funktion hat im ersten post ein Mal, was ist jetzt die Aufgabe? ,cos(x) ist gerade jedes stetige f2 ist gerade das Produkt von geraden fkt ist gerade.
Gruß ledum
drmabuse

drmabuse aktiv_icon

20:16 Uhr, 10.03.2017

Antworten
ups, nee hast recht, es muss ein mal sein - kein plus

also die Aufgabe ist:

cosx sin² x


ich besser das gleich mal aus
drmabuse

drmabuse aktiv_icon

20:18 Uhr, 10.03.2017

Antworten
Aufgabe 2:

f(x)=f(−x)

cosx sin² x= cos(−x) sin² (−x)

und

f(−x)=−f(x)

cos(−x) sin² (−x) = −(cos x sin² x)
Antwort
ledum

ledum aktiv_icon

22:00 Uhr, 10.03.2017

Antworten
Versteh ich nicht, beide Gleichungen können doch nicht stimmen, warum schreibst du dann =
Gruß ledum
Antwort
pwmeyer

pwmeyer aktiv_icon

12:04 Uhr, 11.03.2017

Antworten
Hallo,

drmabuse hat wohl mal aufgeschrieben, was er überprüfen möchte.

Jedenfalls benutzt man Infos über trigonometrische Funktionen, um zu sehen:

cos(-x)=cos(x)
(sin(-x))2=(-sin(x))2=(sin(x))2

Damit:

f(-x)=cos(-x)(sin(-x))2=cos(x)(sin(x))2=f(x)

Also ist f gerade.

Gruß pwm
Diese Frage wurde automatisch geschlossen, da der Fragesteller kein Interesse mehr an der Frage gezeigt hat.