Mathematik online lernen im Mathe-Forum. Nachhilfe online
Startseite » Forum » Mittlere Wachstumsgeschwindigkeit

Mittlere Wachstumsgeschwindigkeit

Universität / Fachhochschule

Differentiation

Funktionalanalysis

Funktionen

Funktionentheorie

Grenzwerte

Tags: Differentiation, Funktion, Funktionalanalysis, Funktionentheorie, Grenzwert

 
Antworten Neue Frage stellen Im Forum suchen
Neue Frage
Awesom0

Awesom0 aktiv_icon

18:11 Uhr, 13.10.2014

Antworten
Hallo
Ich habe ein Problem mit folgender Aufgabenstellung:

Ein Bakterienbestand wächst nach der Formel: N(t)=2001.08t. Dabei ist t die Zeit in Minuten seit Beobachtungsbeginn und N(t) die Anzahl Bakterien zur Zeit t.

Frage: In welcher Minute des Prozesses steigt die mittlere Wachstumsgeschwindigkeit über 30?

Von der Überlegung her nicht so schwer:

2001.08t-2001.080t-0=30

Vereinfacht gibt das:

2001.08t-200t=30

Und hier komme ich nicht mehr weiter. Egal wie ich schiebe und umforme, ich bekomme nichts vernünftiges hin, um zu logarithmieren.

Vielleicht hat jmd von euch einen Tipp.
Besten Dank im Vorraus

Für alle, die mir helfen möchten (automatisch von OnlineMathe generiert):
"Ich bräuchte bitte einen kompletten Lösungsweg." (setzt voraus, dass der Fragesteller alle seine Lösungsversuche zur Frage hinzufügt und sich aktiv an der Problemlösung beteiligt.)
Hierzu passend bei OnlineMathe:
Funktion (Mathematischer Grundbegriff)
Grenzwert (Mathematischer Grundbegriff)
Regel von l'Hospital (Mathematischer Grundbegriff)
Wichtige Grenzwerte

Online-Übungen (Übungsaufgaben) bei unterricht.de:
 
Online-Nachhilfe in Mathematik
Antwort
supporter

supporter aktiv_icon

18:27 Uhr, 13.10.2014

Antworten
Diese Gleichung kannst du algebraisch nicht lösen.Verwende ein Näherungsverfahren/numerische Lösung.

200(1,08t-1)=30t

1,08t-1=320t
Awesom0

Awesom0 aktiv_icon

18:34 Uhr, 13.10.2014

Antworten
Hallo

Danke für die schnelle Antwort, sie leuchtet auch ein. Gäbe es denn eine Möglichkeit, ein exaktes resultat herauszufinden? Vielleicht mit einem anderen Lösungsansatz, als mit dem von mir beschriebenen?
Mit meinem Rechner und der solve-Funktion erhalte ich ein exaktes Ergebnis. Der Rechner zeigt mir leider nur nicht, wie er es macht.
Antwort
supporter

supporter aktiv_icon

18:41 Uhr, 13.10.2014

Antworten
Das Newton-Verfahren wäre die klassische Methode.
Frage beantwortet
Awesom0

Awesom0 aktiv_icon

19:04 Uhr, 13.10.2014

Antworten
Vielen Dank. Damit hat sich die Frage erledigt