![]() |
---|
Könnte mir bitte jemand bei folgenden Aufagabenstellung helfen. Bestimme den Grenzwert der Funktion f(x)= sin(x/2)/(2x) für x -> 0 mit Hilfe der Reihenentwicklung(Taylor-Reihe) Ich hab von dieser Reihe auch schon die ersten paar Glieder ausgerechnet 1/4 - x^2/96 + x^4/7680 + x^6/(128*7!*2) .... usw auch das Bildungsgesetz für n Glieder hab ich an= (-1)^(n+1)/(2*(2n-1)!*2^(2n-1)) MfG und Danke im Voraus Silvio |
Hierzu passend bei OnlineMathe: Grenzwert (Mathematischer Grundbegriff) Regel von l'Hospital (Mathematischer Grundbegriff) Wichtige Grenzwerte Online-Übungen (Übungsaufgaben) bei unterricht.de: Ableiten mit der h-Methode Grenzwerte - Linksseitiger/rechtsseitiger Grenzwert an einer Polstelle Grenzwerte - Verhalten im Unendlichen Grenzwerte im Unendlichen e-Funktion |
![]() |
![]() |
Na dann hast du doch deine Antwort schon im Prinzip da stehen, denn wenn du jedes x gegen null streben lässt bei deiner Reihe dann bleibt ja nur noch 1/4 übrig. |
![]() |
um auf die Taylorreihe 1/4 - x^2/96 + x^4/7680 + x^6/(128*7!*2) zu kommen setzte ich vorher meine variable auf 0 und durch die taylorreihe f(o) + f(0)'/(n!)*x^n erhalt ich meine die oben gepostete taylorreihe. Da kann ich doch nicht einfach alles 0 setzten ... oder versteh ich da was falsch |
![]() |
Das was du null setzt ist der Entwicklungspunkt a. Das hat aber nichts mit dem x zu tun. Man muss ja immer um irgendeinen Punkt "entwickeln" um ein bestimmtes Intervall zu schaffen, in welchem man die Funktion möglichst gut durch die Taylorreihe annähert. Falls du die Regel von L'Hospital kennst kannst du auch ganz leicht testen, dass der Grenzwert stimmt. |
![]() |
ja okay danke hab iwie falsch gedacht ): Ich hab bei dem Beispiel auch den Konvergenzradius berechnen müssen. Ist es möglich das ich als Ergebnis -unendlich erhalte. bzw was genau is der Konvergenzradius. Hab dazu keine erklärungen gefunden die ich verstehe nur wie ich es berechne. r=lim (n->unendlich) (an/an+1) = da erhalt ich dann lim (n->unendlich) -8n(2n+1). Wenn ich dann für n unendlich einsetzte bekomme ich eben -unendlich. |
![]() |
okay danke hab das problem gelöst hab iwie total auf den betrag beim radius vergessen ... danke für die rasche hilfe |