Mathematik online lernen im Mathe-Forum. Nachhilfe online
Startseite » Forum » Kurvendiskussion

Kurvendiskussion

Schüler Gymnasium, 11. Klassenstufe

Tags: erweiterte, Kurvendiskussion

 
Antworten Neue Frage stellen Im Forum suchen
Neue Frage
delond81

delond81 aktiv_icon

12:36 Uhr, 08.04.2010

Antworten
Habe eine Hausarbeit zu machen und hänge an bestimmten stellen,
vielleicht könnt ihr mir helfen?

Aufg.1
Der Innenbogen des "Gateway-Arch" in St. Louis läßt sich näherungsweise beschreiben durch die Funktion
f=187,51,57910-2x21,98810-6x4
a) berechnen Sie die Höhe und Breite
- das sind die Nullstellen und y-Achsenabschnitt, richtig?

b) Wie groß sind die Winkel die der Innenbogen mit der Grundfläche bildet?

Da habe ich leider überhaupt keine Ahnung wie ich den Winkel berechnen soll, könnt ihr mir da auf die Sprünge helfen?
Danke

Für alle, die mir helfen möchten (automatisch von OnlineMathe generiert):
"Ich möchte die Lösung in Zusammenarbeit mit anderen erstellen."
Hierzu passend bei OnlineMathe:
Kurvendiskussion (Mathematischer Grundbegriff)
Online-Nachhilfe in Mathematik
Antwort
michael777

michael777 aktiv_icon

12:45 Uhr, 08.04.2010

Antworten
"das sind die Nullstellen und y-Achsenabschnitt, richtig?"

richtig, aber die Breite ist der Abstand der beiden (äußeren) Nullstellen
achsensymmetrische Funktion
Nullstellen der biquadratischen Gleichung durch Substitution mit u=x2 berechnen


b) "Wie groß sind die Winkel die der Innenbogen mit der Grundfläche bildet?"
Grundfläche ist hier die x-Achse
gesucht sind die Winkel der Tangenten, die die Kurve bei den Nullstellen berühren

es gilt: tanα=f'(x)
α ist der Winkel zwischen Tangente und x-Achse (oder einer Parallelen zur x-Achse)
du musst die Ableitungen für die Nullstellen von f ausrechnen und dann mit arctan bzw. tan-1 den gesuchten Winkel
delond81

delond81 aktiv_icon

12:49 Uhr, 08.04.2010

Antworten
Ja danke, das habe ich schon rausgefunden, aber der Winkel?
Antwort
michael777

michael777 aktiv_icon

12:50 Uhr, 08.04.2010

Antworten
habe gerade die Antwort oben ergänzt
delond81

delond81 aktiv_icon

12:50 Uhr, 08.04.2010

Antworten
ah super, werde das ausprobieren vielen dank,
eventuell melde ich mich nochmal
:-)
delond81

delond81 aktiv_icon

13:35 Uhr, 10.04.2010

Antworten
hab noch einen Rückfrage was meinst du mit "du musst die Ableitungen für die Nullstellen von f ausrechnen"?

Habe jetzt nämlcih folgendes Problem
habe abgeleitet und =tanα
gesetzt wie bekomme ich mein x weg?