![]() |
---|
Hallo, Kann man nachdem man eine Funktionsgleichung gesehen hat, sich schon ungefähr vorstellen wie die Funktion am Graphen aussehen müsste? Die Grundlegenden Dinge weiß ich schon: für gegen unendlich schaut man auf die variabel mit dem höchsten exponent für gegen 0 schaut man auf die variabel mit dem kleinsten exponent Aber ich frage mich dennoch ob es eine Möglichkeit gibt den Graph schon voher zu "erahnen".... Als Beispiel nehme ich: Kann mir jemand helfen? Vielen Dank im Vorraus ;-) |
Hierzu passend bei OnlineMathe: Funktion (Mathematischer Grundbegriff) Online-Übungen (Übungsaufgaben) bei unterricht.de: |
![]() |
![]() |
Du kannst zum Beispiel symmetrien (Punktesymmetrie, Achsensymmetrie...) und markante Punkte (Extremstellen, Wendepunkte...) betrachten. |
![]() |
Hallo! D. Form d. Graphen hängt nat. sehr von d. Funkt. ab. Bei Polynomen ist d. grobe Linie so (neben Symmetr., Nullstellen etc.): "Gerade" Polyn. (also Grad n=2k) sind prinzip. Parabel-förmig (achsen-symmetr.), lin. & konst. Glied bestimmen den Scheitel (x- bzw. y-Kompon.); "ungerade" P. sind zum Scheitel (besser: Sattel) punkt-symmetr., jeder Ast ist wieder Parabel (Potenz)-förmig. Je nach Grad & Koeff. kann d. Sattel ausgeprägt s-förmig (lok. Minim./Maxim.) sein. Das Beispiel ist so'n Fall, ohne konst. Glied ist d. Fkt. zum Urspr. symm. Mehr später.. Viel Erfolg! |
Diese Frage wurde automatisch geschlossen, da der Fragesteller kein Interesse mehr an der Frage gezeigt hat.
|