Mathematik online lernen im Mathe-Forum. Nachhilfe online
Startseite » Forum » Graphen der 1. und 2.Ableitung und Graph der Ausgangsfunktion

Graphen der 1. und 2.Ableitung und Graph der Ausgangsfunktion

Schüler Gymnasium, 11. Klassenstufe

 
Neue Frage stellen Im Forum suchen
Wie hängen die Graphen der 1. und 2.Ableitung mit dem Graph der Ausgangsfunktion zusammen?
Hierzu passend bei OnlineMathe:
Ableitung (Mathematischer Grundbegriff)
Differenzenquotient (Mathematischer Grundbegriff)
Differenzierbarkeit (Mathematischer Grundbegriff)
Ableitung einer Funktion an einer Stelle (Mathematischer Grundbegriff)
Ableitungsfunktion (Mathematischer Grundbegriff)
Ableitungsregeln (Mathematischer Grundbegriff)
Kurvendiskussion (Mathematischer Grundbegriff)
Funktion (Mathematischer Grundbegriff)

Online-Übungen (Übungsaufgaben) bei unterricht.de:
 
Ist der Graph der 2. Ableitung gegeben, so lassen daraus Eigenschaften des Funktionsgraphen herleiten.

Grundsätzlich gilt ja, dass der Funktionsgraph bei einer Nullstelle der
2. Ableitung einen Wendepunkt hat, sofern an dieser Stelle die 3. Ableitung ungleich Null ist.

[Wendepunkte eines Funktionsgraphen]

Die Hinreichende Bedingung, dass die 3. Ableitung an einer solchen Stelle ungleich Null ist, kann man graphisch interpretieren.

Für einen Wendepunkt muss ein Vorzeichenwechsel der 2. Ableitung vorliegen.

2.Ableitungsgraph-Funktionsgraph1


Von Plus nach Minus:   (+)(-)

Das Vorzeichen der 2. Ableitung ändert sich vom Postiven ins Negative.

Die Krümmung des Funktionsgraphen war also zunächst linksdrehend (Linkskurve) und wird nun rechtsdrehend (Rechtskurve).


Von Minus nach Plus:   (-)(+)

Das Vorzeichen der 2. Ableitung ändert sich vom Negativen ins Positive.

Die Krümmung des Funktionsgraphen war also zunächst rechtsdrehend (Rechtskurve) und wird nun linksdrehend (Linkskurve).

In beiden Fällen liegt ein Wendepunkt vor.

Liegt zudem auch noch eine waagerechte Tangente in diesem Punkt vor, so handelt es sich um einen Terrassenpunkt.

Beispiel

Gegeben ist der Graph der 2. Ableitung einer Funktion f.
Was lässt sich über den Verlauf der Funktion aussagen?

2.Ableitungsgraph-Funktionsgraph2

Bei x=-0,8 hat die 2. Ableitung den Vorzeichenwechsel (+)(-): Somit liegt ein Wendepunkt vor.
Das Krümmungsverhalten ändert sich von linksdrehend auf rechtsdrehend.

Bei x=0,8 hat die 2. Ableitung den Vorzeichenwechsel (-)(+): Somit liegt ein Wendepunkt vor.
Das Krümmungsverhalten ändert sich von rechtsdrehend auf linksdrehend.

2.Ableitungsgraph-Funktionsgraph2_L
Wie hilft Dir dieser Artikel?
 
Diese Erklärung hat mir geholfen
 
Diese Erklärung hat mir teilweise geholfen
 
Diese Erklärung hat mir nicht geholfen
 
Ich habe eine Frage zu diesem Thema
 
 
 
Qmn_partnerlogo_neg_fond_klein_2014